Expression of JAK2 V617F Mutation in Chronic Myeloproliferative Disorders

Thesis Submitted For Partial Fulfillment of M.Sc. Degree in Clinical & Chemical Pathology

> By Géhan Hamed Shahin (M.B.,B.Ch)

Under Supervision of Prof. Sherif Nasseh Amin

Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Dr. Samah Mohamed Abd El Hameed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Dr. Manal Mohamed Mahmoud Makhlouf Lecturer of Clinical and Chemical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2008

Acknowledgement

First and foremost, I would like to thank **ALLAH**, for his grace and for giving me the effort to complete this work.

I would like to express my deepest gratitude and greatest respect to **Professor Sherif Nasseh Amin**, Professor of Clinical and Chemical pathology, Cairo University, under whose supervision I had the honor and great pleasure to proceed with this work. His constant guidance, kindness, generosity, encouragement and foresight made all the difference, and I will appreciate it every day, and it is his support that made this work possible.

I would like to express my sincere thanks to **Dr. Samah Mohamed** Abdel Hameed, Lecturer of Clinical and Chemical pathology, Cairo University for her continuous guidance, help, support, patience and offering me a lot of her time and knowledge, I really appreciate her persistence and effort with me.

My deepest appreciation goes to **Dr. Manal Mohamed Mahmoud Makhlouf,** Lecturer of Clinical and Chemical pathology, Cairo University, for her supervision, effort, great help and advice, and for allowing me a free access to her precious time, I really appreciate her great effort excerted with me, perseverance and creativity.

At last – but, by no means least, I would like to thank god who gave me such wonderful **parents** who I thank a lot for always being there pushing me to be better, and I only hope to make them proud of me.

Abstract

JAK2 is a non receptor tyrosine kinase that plays a major role in myeloid development by transducing signals from diverse cytokines and growth factor receptors, a mutation in this Janus kinase interferes with the negative regulation of JAK2 and could account for the hypersensitivity of myeloid cells from MPD patients to growth factors.

JAK2 V617F mutation may play a very important role not only in the development of MPD but also in phenotypic presentation of the disease, as well as it may be useful for the diagnosis, management and follow up of the disease as the mutation increases on relapses and decreases denoting response to treatment hence it may be also used as a predictive test for the treatment outcome in CMPDs patients.

Key Words:

JAK2 V617F, MPD

Page

i

iii

iv

1

6

Item Title List of Figures List of Tables List of Abbreviations Introduction and Aim of the Work Chapter 1: Myeloproliferative Disorders

Table of Contents

	Definition & clinical features	6
	The molecular etiology of the MPDs ET PV and MF	7
	The concept of PV as a trilinear MPD	8
	The 2008 WHO classification of myeloproliferative	
	neoplasms	11
	The 2008 WHO diagnostic criteria for PV, ET and	
	PMF	12
	Point-of-care diagnostic algorithms in PV, ET, PMF	
	and primary eosinophilia	16
	The future towards genetic classification and	
e	diagnosis of myeloid neoplasms	21
Review of Literature	Chapter 2: Janus kinases (JAKs)	23
ati	Definition	23
er	JAK2 site and function:	23
it	Role of JAK2	23
f I	Janus kinases (JAKs) structure	24
6	Regulation of JAK2 kinase activity	25
Å	The role of JAKs and STATs in cytokine signalling	31
vie	Negative regulation of JAK-STAT signalling	33
le le	Clinical associations of abnormal JAK/STAT signalling	37
X	JAK3 as a drug target	38
	JAKs in oncogenesis	38
	Downregulation of negative regulators	39
	Fusion proteins	40
	The JAK2 V617F mutation and MPDs	41
	The mutation	43
	Homozygosity for V617F	45
	Biological effects of JAK2 V617F mutation	46
	JAK2 V617F in ET	48
	JAK2 V617F in IMF	49
	Other clinico-pathological correlations of JAK2 V617F	50
	Diagnostic implications of JAK2 V617F	51
	Implications for therapy	52

	Chapter 3 : Real Time PCR	53
	Conventional RT-PCR	53
	DNA/RNA Real-Time PCR	58
	Chemistry Developments for Real-Time PCR	59
	DNA-binding fluorescent dyes	61
	Linear probes	63
	Hydrolysis probes	66
	Minor groove binding probes	68
	Structured probes	70
	Mutation/allele detection	75
Participants and Methods		77
Results		90
Discussion		138
Conclusion		149
Recommendations		150
Summary		151
References		153
Appendix		182
Arabic Summary		

List of figures

Figure #	Description	Page
Figure(1)	The evolution and dynamics of the disease process	
	in Polycythemia vera	10
Figure(2)	The evolution and dynamics of the disease process	
	in PV according to indicating the sequential	
	occurrence of the early initial PV mimicking ET	
	overt and advanced stages of PV	10
Figure(3)	Diagnostic algorithm for PV	17
Figure(4)	Diagnostic algorithm for suspected ET	18
Figure(5)	Diagnostic algorithm for PMF	20
Figure(6)	Diagnostic algorithm for primary eosinophilia	21
Figure(7)	Overall scheme of JAK, STATS and SOCs	24
Figure(8)	Structure of JAK2 & JAK2 V617F	25
Figure(9)	Role of JAKs in cytokine signalling	31
Figure(10)	JAK-STAT pathway	33
Figure(11)	The domains of JAK2 illustrating binding to the	
	receptor and changes consequent to receptor	
	binding and mutation in the JH2 domain	43
Figure(12)	Genetics of polycythemia Vera, essential	
	thrombocythemia and myelofibrosis.	46
Figure(13)	Steps of conventional RT- PCR	57
Figure (14)	Steps of Dye incorporation method	63
Figure (15)	Fluorescence Resonance Energy Transfer Assay	64
Figure (16)	Melting curve showing single base genotyping	65
Figure (17)	Steps of FRET assay	66
Figure (18)	Steps of Taqman Assay	69
Figure (19)	The molecular beacons assay	72
Figure (20)	Steps of Real-time RT-PCR with Scorpions.	74
Figure (21)	Mutation detection using Real time PCR technique	77
Figure (22)	JAK2 V617F Mutation site identification	84
Figure (23)	Illustration of mechanism of sequence detection	85
Figure(24)	Sex prevalence among CMPD patients	92
Figure(25)	Frequency of splenomegaly among the three	
	groups of CMPDs patients	95
Figure(26)	Mean value of Hemoglobin level among the three	
	groups of CMPDs patients.	95
Figure(27)	Mean value of Total leucocytic count among the	
	three groups of CMPDs patients	96

Figure #	Description	Page
Figure(28)	Mean value of platelets count among the three	I uge
rigure(20)	groups of CMPDs patients	96
Figure(29)	JAK2 mutation expression in CMPDs patients	101
Figure(30)	Genotype distribution of JAK2 mutation	101
rigure(50)	expression in CMPDs patients	101
Figure (31)	JAK2 mutation expression in CMPDs patients in	101
1 igure (51)	the three groups, PV, ET, and MF patients	
	the three groups, i v, Di, and thi putients	102
Figure (32)	Genotype distribution of JAK2 mutation expression	
	in CMPDs patients in the three groups PV, ET &	
	MF patients	102
Figure (33)	JAK2 mutation expression in the control group.	103
Figure (34)	Statistical comparison between CMPDs patients	
	and the control group as regard the JAK2 mutation	
	expression	125
Figure (35)	Statistical comparison of positive and negative	
	JAK2 mutation in CMPDs, PV, ET, MF patients	
	and the control group.	134
Figure (36)	Printout of Smart Cycler software, the expression	
	of normal gene (wild type) is listed (above the red	
	line), this patient was negative for JAK2 mutation	
	expression (below the red line).	135
Figure (37)	Printout of SmartCycler software, the expression of	
	normal gene (wild type) is listed (above the red	
	line), this patient was positive for JAK2 mutation	
	expression of heterozygous type (above the red	
	line).	136
Figure (38)	Printout of SmartCycler software, normal gene	
	(wild type) is not expressed (below the red line),	
	this patient was positive for JAK2 mutation	
	expression of homozygous type (above the red	
	line).	137

List of Tables

Table #	Description	Page
Table (1)	The 2008 World Health Organization classification	
	scheme for myeloproliferative neoplasms.	12
Table (2)	The 2008 World Health Organization diagnostic criteria	
	for polycythaemia vera, essential thrombocythemia, and	
	primary myelofibrosis.	14
Table (3)	Clinical and laboratory data of CMPDs patients at	
	diagnosis.	91
Table (4)	Clinical and laboratory data of PV, ET & MF	
	patients at diagnosis.	94
Table (5)	Clinical and laboratory data of the control group.	98
Table (6)	JAK2 mutation detection in CMPDs patients.	100
Table (7)	JAK2 detection in the control group.	103
Table (8)	Correlation of JAK2 mutation with clinical and	
	laboratory data in CMPDs patients.	104
Table (9)	Correlation of JAK2 mutation with clinical and	
	laboratory data in PV, ET & MF patients.	106
Table (10)	Statistical comparison between CMPDs patients	
	and the control group as regard clinical and	
	laboratory data.	108
Table (11)	Statistical comparison between PV, ET & MF	
	patients with the control group as regard clinical	
	and laboratory data.	111
Table (12)	Statistical comparison between positive JAK2	
	mutation CMPDs patients and the control group as	
	regard clinical and laboratory data.	113
Table (13)	Statistical comparison between positive JAK2	
	mutation PV, ET & MF patients as regard clinical	
	and laboratory data.	116
Table (14)	Statistical comparison of positive and negative	
	JAK2 mutation CMPDs patients as regard clinical	
	and laboratory data.	118
Table (15)	Statistical comparison of positive and negative	
	JAK2 mutation in PV, ET & MF patients as regard	
	clinical & laboratory data.	123

Table #	Description	Page	
Table (16)	Statistical comparison between CMPDs patients		
	and the control group as regard JAK2 mutation.	124	
Table (17)	Statistical comparison between PV, ET, MF		
	patients and the control group as regard JAK2		
	mutation.	127	
Table (18)	Statistical comparison between PV, ET, MF		
	patients as regard JAK2 mutation.	128	
Table (19)	Statistical comparison between each of CMPDs,		
	PV, ET & MF patients and the control group as		
	regard JAK2 mutation.	130	
Table (20)	Statistical comparison of positive and negative		
	JAK2 mutation in CMPDs, PV, ET, MF patients &		
	the control group.	133	

	List	of	abbreviations
--	------	----	---------------

Abbreviation	The Full term
ABL	Abelson strain of murine leukemia virus
ALL	Acute Lymphoblastic Leukemia
ALCL	Anaplastic Large Cell Lymphoma
AML	Acute Myeloblastic Leukemia
ATP	Adenosine Triphosphate
BCR	Breakpoint Cluster Region
BHQ	Black Hole Quenchers
BM	Bone Marrow
CBC	Complete Blood Count
CD	Cluster of Differentiation
CEL	Chronic Eosinophilic Leukemia
CEL/NOC	Chronic Eosinophilic Leukemia Not Otherwise Classified
CI	Confidence Interval
CIMF	Chronic Idiopathic Myelofibrosis
CLL	Chronic Lymphocytic Leukemia
CMPD	Chronic Myeloproliferative Disorder
CML	Chronic Myelogenous Leukemia
CNL	Chronic Neutrophilic Leukemia
cDNA	Complementary Deoxyribonucleic Acid
del	Deletion
DNA	Deoxyribonucleic Acid
DVT	Deep Venous Thrombosis
EDTA	Ethylene Diamine Tetra-Acetic acid
EEC	Endogenous Erythroid Colony
EPO	Erythropoietin
EPOR	Erythropoietin Receptor
ET	Essential Thrombocythemia
F	Phenylalanine
FERM	Band our-point-one, Ezerin, Radixin, Moesin
FGFR-1	Fibroblast Growth Factor Receptor – 1
FISH	Fluorescence In Situ Hybridization
FLT3	Fms-Like Tyrosine kinase-3
FRET	Fluorescence Resonance Energy Transfer
G	Guanine
G-CSF	Granulocyte Colony Stimulating Factor
G-CSFR	Granulocyte Colony Stimulating Factor Receptor
GH	Growth Hormone
GM-CSF	Granulocyte Monocyte Colony Stimulating Factor
GM-CSFR	Granulocyte Monocyte Colony Stimulating Factor Receptor
Hb	Hemoglobin
Hct	Hematocrit
HES	Hypereosinophilic Syndrome
HSC	Hematopoietic Stem Cell
HS	Highly Significant

Abbreviation	The Full term
HTLV-1	Human T Cell Lymphotropic Virus-1
IL	Interleukin
IMF	Idiopathic Myelofibrosis
JAK	Janus Kinase
JH	Janus Homology
JMML	Juvenile Myelomonocytic Leukemia
LAP	Leucocyte Alkaline Phosphatase
LDH	Lactate Dehydrogenase
LIF	Leukemia Inhibitory Factor
LOH	Loss of Heterozygosity
LPS	Lipopolysaccharides
МАРК	Mitogen Activated Protein Kinase
Mbp	Major Break Point
MCD	Mast Cell Disease
MDS	Myelodysplastic Syndrome
MGB	Minor Groove Binder
Mg	Magnesium
mg	Milligram
MMM	Myelofibrosis with Myeloid Metaplasia
Mmol	Millimole
Mn	Manganese
MPD	Myeloproliferative Disorder
MPN	Myeloproliferative Neoplasm
mRNA	Messenger Ribonucleic Acid
Nk	Natural Killer
NS	Non Significant
OR	Odds Ratio
PCR	Polymerase Chain Reaction
PCM1	Pericentriolar Material - 1
PDGFRA	Platelet Derived Growth Factor Receptor A
PDGFRB	Platelet Derived Growth Factor Receptor B
PDGF	Platelet Derived Growth Factor
Ph	Philadelphia
PIAS	Protein Inhibitors of Activated STAT family
PI3K	Pathways Including phophoinositide 3 Kinase
Plts	Platelets
PMBL	Primary Mediastinal B Cell Lymphoma
PNA	Peptide Nucleic Acid
PRV-1	Polycythemia Rubra Vera
PV	Polycythemia Vera
PVSG	Polycythemia Vera Study Group
P-value	Probability Value
RA	Refractory Anemia
RAS	Murine Sarcoma Virus
RCM	Red Cell Mass
RT	Reverse Transcriptase
S	Significant

Abbreviation	The Full term
SCF	Stem Cell Factor
SCID	Severe Combined Immunodeficiency
SHP	SRC Homology Phosphatase
SLIM	STAT Interacting LIM proteins
SNP	Single Nucleotide Polymorphism
SOCS	Suppressor Of Cytokine Signalling proteins
STAT	Signal Transducers and Activators of Transcription
SUMO	Small Ubiquitin -Like Modifier
t	Translocation
Т	Thymine
Tm	Melting Time
TPO	Thrombopoietin
TPOR	Thrombopoietin Receptor
ТҮК	Tyrosine Kinase
μL	Micro Liter
V	Valine
WBCs	White Blood Cells
WT	Wild Type
WHO	World Health Organization
X-CIP	X-Chromosome Inactivation Pattern

Introduction

The myeloproliferative disorders (MPDs) comprise a spectrum of chronic haematologic diseases. They are a heterogeneous group of diseases, characterised by increased numbers of differentiated blood cells and are believed to arise in a multipotential haemopoietic progenitor. They include polycythaemia vera (PV), essential thrombocythemia (ET), primary idiopathic myelofibrosis (IMF) (the classic MPDs), as well as chronic eosinophilic leukaemia/hypereosinophilic syndrome (CEL/HES), systemic mastocytosis and chronic myeloid leukemia (CML) (*Campbell and Green, 2006*)¹⁶.

Polycythaemia Vera (PV) and essential thrombocythemia (ET) share several features: a hypercellular marrow with overproduction and predominance of one lineage; hypersensitivity to cytokines such as erythropoietin (EPO); presence of extramedullary haemopoiesis; progression of a significant proportion of cases to myelofibrosis and a relatively low propensity for evolution to acute leukemia in the absence of the use of leukaemogenic cytoreductive treatment. The role of the BCR-ABL tyrosine kinase in CML pathophysiology has now been established for some years and more recently it has become apparent that aberrant tyrosine kinase activity is also associated with other MPDs (*De Keersmaecker and Cools, 2006*)²³.

Diagnosis of the MPDs is difficult due to lack of diagnostic markers. Recently, the acquisition of a mutation in the Janus kinase 2 (JAK2) gene by haemopoietic cells has been described as a genetic defect underlying myeloproliferative disorders. The mutation leads to constitutive activation of JAK2, a tyrosine kinase involved in cytokine receptor signalling (*Poodt et al., 2006*)¹¹⁰. So the impact of the JAK2

1

V617F mutation on the cytokine signalling pathways suggests that it plays an important role in the pathogenesis of MPDs and represents a major breakthrough in molecular understanding of the myeloproliferative disorders (MPDs) that may have significant implications for diagnosis and treatment (*Skoda.,2007*)¹³².

The JAK family of tyrosine kinases includes JAKs 1–3 and tyrosine kinase 2 (TYK2). JAKs are expressed ubiquitously in all cells with the exception of JAK3, which is found only in haematopoietic cells $(Skoda, 2007)^{132}$. The most important structural domain of the JAK molecules is the enzymatic kinase domain (JH1), which phosphorylates tyrosines on target proteins. The pseudokinase domain (JH2) has no enzymatic activity and is thought to inhibit the kinase domain, while the FERM domain is important in regulating binding of the JAK proteins to cytokine receptors (*Khwaja.*, 2006)⁵³.

JAK2 has a critical role in mediating the signalling pathways of thrombopoietin (TPO), erythropoietin (EPO) and other cytokines involved in haemopoiesis. JAK2 is activated by the binding of these ligands to cytokine receptors (*Larsen et al., 2007*)⁶⁸. Activation of cytokine receptors by JAK2 also stimulates several other signalling pathways mediated by adaptor proteins, including Ras, mitogen-activated protein kinases, phosphoinositide 3 kinases, protein kinase B and phospholipase C. Together, these events alter the proliferation, differentiation and survival of haematopoietic cells (*Royer et al., 2005*)¹²⁰.

The V617F somatic mutation in the Janus kinase 2 (JAK2) gene, which causes the substitution of phenylalanine for valine at amino acid position 617 (V617F), has recently been found in the majority of patients with polycythaemia (PV) and in many with essential thrombocythemia (ET) or idiopathic myelofibrosis (*Scott et al., 2007*)¹²⁷. This gene encodes a cytoplasmic tyrosine kinase. The mutation, which occurs in the JAK homology 2 (JH2) negative regulatory domain increases JAK2 kinase activity and causes cytokine-independent growth of cell lines and cultured bone marrow cells. Mutant JAK2 transfected into murine bone marrow cells produces PV-like phenotypes including erythrocytosis and subsequent myelofibrosis in recipient animals, suggesting a causal role for the mutation (*Wernig et al., 2006*)¹⁷¹.

The main functional consequence of the JAK2 V617F tyrosine kinase mutation is an increased sensitivity of cytokine receptors to incoming signals. The activating effect of the mutation is such that the JAK2 complex becomes partially independent of the signal (*Kralovics et al., 2005*)⁵⁸.

Based on the current understanding of JAK2 V617F, the onset of MPD is marked by the acquisition of the somatic JAK2 V617F mutation in the heterozygous state or a mutation in an as-yet-unknown gene. Following acquisition of the JAK2 V617F mutation, mitotic recombination can subsequently lead to the mutation occurring in the homozygous state. By allowing duplication of the mutated JAK2 gene and elimination of wild-type JAK2, mitotic recombination could explain observations of a more aggressive disease course in patients with homozygous JAK2 V617F (*Vannuchhi et al, 2006*)¹⁶². The majority of the MPDs patients were heterozygous for V617F, however, many were hemizygous (one mutant and deleted wild-type gene), or homozygous (two mutant genes) (*Ma et al., 2006*)⁸².

Although the JAK2 V617F mutation is sufficient to cause features resembling PV in animal models, the situation in human MPD is

3