Radial Artery Harvesting Endoscopic Versus Conventional

Essay

Submitted for partial fulfillment of Master Degree in General Surgery

By

Adel Abd-elmaksoud Mohammed Khalifa

M.B.B.CH

Under supervision of

Prof. Dr. Ahmed Mahmoud Saad Eldin

Professor of General Surgery Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Hossam Eldin Ashour Abd-elhamid

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Atef Abd-elhamid Mohammed Desouky

Lecturer of General Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2011

استخراج الشريان الكعبري بالمنظار مقارنة باستخراجه جراحيا

توطئة لاستيفاء درجة الماجستير في الجراحة العامة رسالة مقدمة من الطبيب عادل عبدالمقصود محمد خليف ه

تحت اشراف

- **الأستاذ الدكتور / أحمد محمود سعد الدين** أستاذ الجراحة العامة كلية الطب- جامعة عين شمس
 - **الدكتور / حسام الدين عاشور عبدالحميد** أستاذ مساعد جراحة القلب والصدر كلية الطب- جامعة عين شمس
- **الدكتور / عاطف عبدالحميد محمد دسوقي** مدرس الجراحة العامة كلية الطب- جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١**1**

SUMMARY

The radial artery appears from its direction to be the continuation of the brachial artery but it is smaller in caliber than the ulnar.

The RA is a thick-walled muscular artery which consists of one layer of flattened endothelial cells aligned along the long axis of the artery. This constitutes the intima. The intima is very thin and rests directly on the internal elastic lamina which has multiple fenestrations.

The media is thick and consists of many leiomyocytes arranged in multiple tight layers with some elastic and collagen fibers, fibroblasts and rare macrophages. The external elastic lamina is less individual than the internal elastic lamina. Some evidence suggests that the vasa vasorum, nerves and lymphatic are confined to the adventitia, while others describe vasa vasorum penetration into the RA medial layer.

This may theoretically cause some degree of hypoxia following RA harvest. It is well-known that the biological features of the grafts employed in coronary operation may affect their long-term performance, in particular the

ACKNOWLEGEMENT

First and foremost I am thankful to AUAH the beneficent and

the merciful.

I wish to express my deepest thanks and gratitude to

Prof.Dr. Ahmed Mahmoud Saad Eldin

Professor of General Surgery, Faculty of Medicine, Ain Shams University.

For his help and sincere guidance.

I am very grateful for his great help, advice and encouragement.

I am also extremely indebted and grateful to

Ass. Prof. Dr. Hossam Eldin Ashour Abd-elhamid

Assistant Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University.

Who gave much of his time and spared no effort in guiding me throughout this work.

I would like to egress my deepest thanks and gratitude to

Dr. Atef Abd-elhamid Mohammed Desouky

Lecturer of General Surgery, Faculty of Medicine, Ain Shams University.

For his sincerest support, motivation and encouragement throughout this work.

Thanks for constant support, supervision and encouragement.

CONTENTS

Contents.	
Table of figures and schemes.	iii
List of Abbreviations.	
Introduction.	1
Aim of the work.	4
<u>Review of Literature:</u>	
1-Anatomy of the radial artery.	5
2-Histopathology of the radial artery.	26
3-Biology and spasticity of the radial artery.	
4-Preoperative assessment to the radial artery.	
5-Techniques of radial artery harvesting: conventional and endoscopic.	79
6-Functional and histological assessment of the conduit: conventional versus endoscopic radial artery harvest for coronary artery bypass grafting	
7-Complications and benefits: conventional versus endoscopic methods.	117
8-Cost Effective in Endoscopic Radial Artery Harvesting.	131
Summary.	135
Recommendations.	139
References.	140
Arabic summary	

FIGURES AND SCHEMES

FIGURE	NAME OF FIGURE	PAGE
Fig 1	Surgical anatomy in the volar forearm. The proximal, middle, and distal zones are shown. Cross-sectional anatomic relationships are emphasized.	10
Fig 2	Ulnar and radial arteries. Deep view	13
Fig 3	Surface anatomy of the radial artery	17
Fig 4	Radial artery branches	25
Fig 5	Histology of radial artery	27
Fig 6	Summary of the pathology, pathogenesis, complications, and natural history of atherosclerosis	30
Fig 7	An example of RA section depicting the indices used to evaluate severity of intimal hyperplasia and atherosclerosis	33
Fig 8	interaction between EDRFs and EDCFs	38
Fig 9	The arm is placed on an arm board with an angle perpendicular to the operating table.	86
Fig 10	The radial artery is visualized through the mini-incision	87
Fig 11	A careful dissection of the radial artery from the surrounding structures is performed by means of the vessel sealing system	88
Fig 12	The radial artery retractor presents a modified front (A) and rear (B) design for improved exposure in the forearm.	92
Fig 13	The additional channel can be used either connected to suction or to a CO_2 insufflator	92
Fig 14	tunnel-like concept of the retractor is depicted	92
Fig 15	Endoscopic view: the fascia between the brachioradialis and the flexor carpi muscles	95
Fig 16	The radial artery is dissected free on the brachioradialis side along its entire length	96
Fig 17	Dissection is continued on the flexor carpi side	96

Fig 18	The presence of side branches on the inferior side of the radial artery is assessed	97
Fig 19	The absence of residual side branches is assessed by means of the hook	97
Fig 20	Tip of the retractor is used as a guide for the proximal incision	98
Fig 21	A tape is passed around the radial artery and secured in a snugger outside the arm.	99
Fig 22	The radial artery is divided at the level of the wrist and pulled out from the incision at the level of the antecubital fossa.	99
Fig 23	The distal side of the radial artery is divided but not the proximal side so as to preserve blood perfusion.	100
Fig 24	Storz retractor (Karl Storz, Culver City, CA), reusable scissors, and telescope with camera	103
Fig 25	Starion thermal welding shears (Starion Instruments, Saratoga, CA) with power source.	104
Fig 26	RadLITE Tissue Retractor System (Teleflex Medical, Research Triangle Park, NC)	106
Fig 27	The hands-free self-retaining system provides the operator with direct visualization for minimally invasive harvesting of the radial artery.	108
Fig 28	Representative low power and high power magnification H/E stained slides	112
Fig 29	Cosmetic result between conventional and surgical technique	130

List of Schemes

Scheme Number	Scheme name	Page
Scheme 1	Conventional technique: a 16-20 cm incision is performed	79
Scheme 2	Surgical anatomy of the radial artery	80
Scheme 3	Surgical anatomy of nervous structures during radial artery harvesting	80
Scheme 4	The surgeon harvesting the radial artery stands at the level of the hand	85
Scheme 5	A 2-cm incision is performed at the level of the wrist	87

List of Abbreviations

AT	Allen test
CABG	Coronary Artery Bypass Graft
CAD	Coronary Artery Disease
cAMP	Cyclic Adenosine Mono phosphate
cGMP	Cyclic Guanosine Mono phosphate
CRH	Conventional Radial Artery Harvesting
DBI	Digital branch index
DPA	Deep palmar arch
EDCF	Endothelial Derived Contraction Factor
EDHF	Endothelial Derived Hyperpolarizing Factor
EDNO	Endothelial Derived Nitric Oxide
EDRF	Endothelial Derived Relaxation Factor
EDV	End diastolic volume
ERAH	Endoscopic Radial Artery Harvesting
ESVH	Endoscopic Saphenous Vein Harvesting
EVH	Endoscopic Vein Harvesting
FPR	Finger to Palm Ratio
IMA	Internal Mammary Artery
IMR	Intimal to Medial Ratio
IMT	Intima-media thickness
ITI	Intimal Thickness Index

IVUS	Intravascular ultrasound
LACN	Lateral antebrachial cutaneous nerve
LCN	Lateral Cutaneous Nerve
MIRH	Minimally Invasive Radial Artery Harvesting
MW3	Mobile Wade of 3
NO	Nitric Oxide
PGI2	Prostacyclin
PPG	Photoplthysmography
PSV	Peak Systolic Velocity
ОСТ	Optical coherence tomography
RA	Radial Artery
RAC	Radial Artery Compression
ROC	Receiver Operating Characteristic
RPI	Radial Perfusion Index
SPA	Superficial palmar arch
SRN	Superficial branch of Radial Nerve
UA	Ulnar Artery
UPI	Ulnar Perfusion Index

INTRODUCTION

The use of radial artery for coronary artery revascularization has been steadily increased since the first report by **Acar and colleagues** in 1993. In patients with triple-vessel disease or risk factors for sternal wound complications, use of the radial artery allows the number of arterial anastomoses to be increased (**Acar C, et al., 1993**).

Studies have demonstrated short-term patency and superior mid to long-term results with radial artery grafts compared to saphenous vein grafts. A less invasive method of coronary artery revascularization, which includes minimally invasive direct coronary artery bypass grafting and beating-heart endoscopic coronary artery surgery.

However, a long skin incision from 1 cm proximal to the wrist to the antecubital fossa to harvest the radial artery was made. Many patients who underwent conventional open harvesting expressed cosmetic dissatisfaction. Furthermore, open harvesting is associated with several problems, particularly neurologic complications (Mazzei V, et al., 2001).

Minimally invasive conduit harvesting techniques for coronary artery bypass grafting (CABG) have developed INTRODUCTION

over the past decade aiming to reduce the morbidity and recovery time associated with the procedure, whilst preserving the quality of the conduit. In conventional radial artery harvest (CRH). The incision runs from just below the anticubital fossa to 1cm proximal to the crease, along the medial border of the brachioradialis muscle to 1 cm proximal to the wrist.

Minimally invasive radial artery harvest (MIRH) aims to reduce the length of the skin incision although the length of the subcutaneous tunnel is still the same with both techniques (Athanasiou T, et al., 2003).

The radial artery has become the second arterial graft of choice after the internal thoracic artery in patients undergoing coronary artery bypass grafting. Improved patency rates of the radial artery observed in recent years were attributed to improved harvesting technique and routine use of antispasmodic agents, such as calciumchannel blockers or nitrates (**Desai ND et al., 2004**).

Wound healing has an impact on postoperative pain, length of post-operative stay and cost of the procedure, and ultimately affects patient satisfaction with the procedure. Cosmetic outcome (risk of hypertrophic scarring), quality of life following surgery, and particularly in the case of radial artery harvesting, neurological deficit as a result of damage to the superficial radial or lateral antebrachial cutaneous nerves are all important components (Casselman FP et al., 2004).

The use of the endoscopic approach for radial artery harvesting offers several advantages when compared to the open technique in terms of wound complications, wound infections, hematomas, less neurological complications, and improved aesthetics. The advantages in terms of reduced neurological injuries are mostly related to the careful dissection of the distal part of the radial artery (**Bisleri G et al., 2006**).

Despite these significant advantages many surgeons avoid a more aggressive use of this conduit because of the bad cosmetic results in this widely exposed part of the body as well as the well-known harvest related complications. The incidence of major complications such as hand ischemia, wound infection and hematomas with the conventional harvesting approach is quite low and ranges between 0.2% and 1.5%. However, the incidence of sensory nerve injuries and scar-related complaints are significant higher **(Shapira et al., 2006).**

Aim of the work

The aim of this essay is to provide a review of literature about the endoscopic harvesting of radial artery and why it is preferred by many surgeons and patients over conventional harvesting of radial artery.

Anatomy of Radial Artery

Introduction

The artery which supplies the upper extremity continues as a single trunk from its commencement down to the elbow; but different portions of it have received different names, according to the regions through which they pass. That part of the vessel which extends from its origin to the outer border of the first rib is termed the subclavian; beyond this point to the lower border of the axilla it is named the axillary; and from the lower margin of the axillary space to the bend of the elbow it is termed brachial; here the trunk ends by dividing into two branches the radial and ulnar.

Our study will be about radial artery.

Compartments of the Forearm

The antebrachial fascia is a continuation of the brachial fascia. The antebrachial fascia surrounds the musculature of the forearm and divides it into mobile wad, volar, and dorsal compartments. Fascia surrounds the individual muscles and provides strong septal attachments