

EFFECTS OF ARACHIDONIC ACID ON SCHISTOSOMA MANSONI AND SCHISTOSOMA HAEMATOBIUM WORMS

A THESIS SUBMITTED TO THE FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY IN FULFILMENT OF THE REQUIREMENTS FOR THE Ph.D. DEGREE

IN

ZOOLOGY (IMMUNOLOGY/PARASITOLOGY)

BY

MARWA MOHSEN ABOU ELDAHAB Master degree (2004)

SUPERVISED BY

Prof. Dr. Rashika Ahmed F. El Ridi

Professor of Immunology Zoology Department Faculty of Science Cairo University Dr. Samia M. Fawzi

Ass. Professor of Parasitology Zoology Department Faculty of Science Ain Shams University

Dr. Noha A. Mahana

Lecturer of Immunology Zoology Department Faculty of Science Cairo University

DEPARTMENT OF ZOOLOGY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY 2011

ABSTRACT

Name: Marwa Mohsen Abou Eldahab

Title of the thesis: Effects of Arachidonic Acid on Schistosoma mansoni and Schistosoma haematobium Worms.

Key Words: Schistosoma mansoni, Schistosoma haematobium, Unsaturated Fatty Acids, Arachidonic Acid, Schistosomiasis.

Development of arachidonic acid (ARA) for the treatment of schistosomiasis *mansoni* and schistosomiasis *haematobium* is a novel approach. It is based on the break down of the life cycle of schistosomes by the activation of the neutral sphingomyelinase (nSMase) bounded to the parasite tegument, using unsaturated fatty acids, such as ARA, which leads to the exposure of lung stage larvae surface membrane antigens to antibody binding, as well as, eventual attrition of developing schistosomula and adult worms.

5 mM ARA was found to lead to irreversible killing of ex vivo 3-, 4-, 5-, and 6-week-old *S. mansoni* and 8-, 10-, and 12-week-old *Schistosoma haematobium* worms within 3 to 4 h, depending on the parasite age. ARA-mediated lethal action was prevented by nSMase inhibitors, such as CaCl2 and GW4869. Scanning and transmission electron microscopy revealed that ARA-mediated worm killing was associated with spine destruction, membrane blebbing, basal vacuolation associated with the basal lamina, fragmentation of muscles and disorganization of the apical membrane structure.

ARA-mediated *S. mansoni* and *S. haematobium* worm attrition was reproduced *in vivo* in different experiments using pure ARA oil, ARA capsules, ARA oil/ARA infant milk formula (ARA milk) or ARA capsule/ARA infant milk formula (ARA milk). Total worm burden and egg counts were significantly reduced (30 to 60%) in *S. haematobium* infected hamster groups,

and this reduction was seen in both *S. mansoni* and *S. haematobium* by adding ARA-Nestle infant milk formula. *S. haematobium* was more susceptible to ARA as antischistosomal drug than *S. mansoni* worms. This was supported by detecting significantly higher antibody titres against schistosomal antigens in *S. haematobium* infected hamster groups. Electron microscopy revealed *in vivo* destructive tegumental effect on the worms.

Tumour necrosis factor- α mRNA was expressed in *S. mansoni* treated and infected control groups in addition to interferon- γ in infected control and ARA oil treated groups indicating the persistence of a highly pro-inflammatory Th1-like response beyond the acute phase of infection. Transforming growth factor- β m RNA was also detected in ARA oil and ARA capsules treated hamster groups, which has a down regulatory effect. These results were supported by the significant decrease (P < 0.01) in granuloma diameter by 43-39% in ARA oil and ARA capsule treated groups, respectively.

ARA is already marketed for human use in the United States and Canada for proper development of newborns and muscle growth of athletes; thus, ARA has potential as a safe and cost-effective addition to antischistosomal therapy.

AIM OF THE WORK

Long Term Objective:

Development of a novel oral treatment for schistosomiasis *mansoni* and schistosomiasis *haematobium* based on a natural source (arachidonic acid ARA).

Short Term Objectives:

In vitro **studies** were carried out to assess the effect and mechanism of ARA on *S. mansoni* and *S. haematobium* juvenile and adult stages by testing:

- The effect of ARA concentration.
- The effect of fetal calf serum (FCS).
- The effect of ARA inhibitors.
- ARA effect on juvenile and adult worms' tegument by EM (Scanning and Transmission).

In vivo **studies** were carried out to examine the efficacy of different formula of ARA as a novel drug on both *S. mansoni* and *S. haematobium*. Determine the best regimen and its efficacy by different parasitological and immunological techniques.

Contents

CONTENTS

	Pages
Acknowledgements	i
Contents	iii
Abstract	vii
List of Abbreviations	ix
List of Figures	xii
List of Tables	xvi
Introduction	1
Aim of the Work	7
Review of Literature	8
1- Life Cycle	8
2- Symptoms and Pathological changes	9
3- Chemotherapy	11
3.1. Drugs Included In the WHO Model List of	12
Essential Drugs.	
3.1.1. Praziquantel (PZQ)	12
3.1.2. Oxamniquine (Oxa)	14
3.2. Experimental Schistosomicides	16
3.2.1. Myrrh	16
3.2.2. Artemisinin Derivatives	17
3.2.2. Trioxolanes	18
3.2.4. Oxadiazoles	19
3.2.5. Mefloquine	20
4. New Trends towards Schistosomiasis Therapy	22
4.1. The Schistosome Outer Lipid Bilayer	22
4.2. Sphingomyelin and Sphingomyelinase	25
4.3. Unsaturated Fatty Acids	28
4.4. Arachidonic Acid	30
4.4.1. Structure	30
4.4.2. Properties	33
4.5. Activators and Inhibitors of nSMase	34
Materials and Methods	38
In Vitro Studies	38

1. Animals and Parasites	38
2. Effect of Arachidonic Acid (ARA)	39
3. <i>In vitro</i> Effect of Neutral Sphingomyelinase (nSMase)	42
Inhibitors on Schistosomicidal Activity of ARA	
4. Electron Microscopy (EM) on ARA Treated Worms	44
In Vivo Studies	45
1. Animals and Parasites	45
2. Infection	46
3. Drugs Treatment	46
4. Experimental Design	47
5. Parasitological Parameters	51
5. 1. Worm burden	51
5. 2. Egg Count	52
6. Histopathological Parameters	53
6. 1. Granuloma Count and Diameter	53
6.2. Electron Microscopy	53
7. Immunological Parameters	54
7. 1. Preparation of plasma and peripheral blood	54
mononuclear cells (PBMCs)	
7. 2. RNA Isolation	56
7. 3. Reverse Transcription-Polymerase Chain Reaction	58
(RT-PCR)	
7. 4. Agarose Gel Electrophoresis	62
7. 5. Measurement of Schistosome-Specific Antibody	64
Responses by Enzyme-Linked Immunosorbent Assay	
[ELISA]	
8. Biochemical Parameters	69
8. 1. Triglycerides Levels	69
8. 2. Cholesterol Levels	71
9. Statistical Analysis	72
Results	73
In Vitro Studies	73
1. Effect of Different Concentrations of ARA on	73
Schistosomes Species and Age.	
2. In Vitro Effect of Neutral Sphingomyelinas (nSMase)	78

<u>Contents</u>

inhibitors on Arachidonic Acid Schistosomicidal Action	
Results of EM	80
A. Scanning EM	80
A.1.Adult Schistosome worms	80
A.1.1. Control Group -0 mM ARA	80
A.1.2. Effect of 2.5 mM ARA on Adult Schistosomes	81
A.1.3. Effect of 10 mM ARA on Adult Schistosomes	82
A. 2. Juvenile Schistosome Worms	83
A.2.1. 3-weeks old <i>Schistosoma mansoni</i> Control	83
Group -0 mM ARA	
A. 2. 2. 4-wk Old <i>Schistosoma mansoni</i> Control Group -0 mM ARA	83
A. 2. 3. 8-wk Old Schistosoma haematobium Control	84
Group-0 mM ARA	0.4
A. 2. 4. 10-wk Old <i>Schistosoma haematobium</i> Control	84
Group- 0 mM ARA	0.5
A. 2. 5. Effect of 2.5 mM ARA on Juvenile	85
Schistosomes	0.
A. 2. 6. Effect of 5 mM ARA on 4-, 8-, 10-wk old	85
Schistosomes	
B.Transmission EM	115
B.1. Adult Schistosome Worms	115
B.1.1. Control Group -0 mM ARA	115
B.1.2. Effect of 2.5 mM ARA on Adult Schistosomes	115
B.1.3. Effect of 10 mM ARA on Adult Schistosomes	116
B.2. 3-, 4-, 8-, 10- weeks' old Schistosomes- Control	117
Group- 0 mM ARA	
B.3. Effect of 2.5 mM ARA on Juvenile Schistosomes	118
B.4. Effect of 5 mM ARA on 4-, 8-, 10-wk old	119
Schistosomes	1 41
In Vivo Studies	141
I: Efficacy of Different Formula of ARA in	141
Treating Schistosoma mansoni Worms	
1. Parasitological Parameters	141
1 1 Worm Rurden	141

1. 2. Egg Count and Fecundity	148
2. Histopathological Parameters	154
3. Electron Microscopy (EM)	160
3. 1. Scanning Electron Microscopy	160
3. 2. Transmission Electron Microscopy	170
4. Immumological Response	175
4. 1. Cellular response (by RT –PCR)	175
4. 2. Humoral Response (by ELISA	181
5. Lipid Levels	189
II: Efficacy of Different Formula of ARA in	191
Treating Schistosoma haematobium Worms	
1. Parasitological Parameters	191
1. 1. Worm Burden	191
1.2. Egg Count and Fecundity	199
2. Histopathological Parameters	203
3. Electron Microscopy	209
3.1. SEM	209
3.2. TEM	219
4. Immumological Response	224
Humoral Response (by ELISA)	224
5. Lipid Levels	232
Discussion	236
Summary	253
References	256
Arabic Summary	297

<u>Contents</u>

LIST OF ABBREVIATIONS

ADP Adenosine-5-diphosphate.
ATP Adenosine-5-tiphosphate.

AP Aminophenazone. ARA Arachidonic acid.

A-SMase Acid sphingomyelinase.

bp base pair.

BSA Bovine serum albumin.

CaCl₂ Calcium chloride.

cDNA Complementary DNA.

dATP Deoxyadenosine triphosphate.
dCTP Deoxycytidine triphosphate.
dGTP Deoxyguanosine triphosphate.
dTTP Deoxythymidine triphosphate.
DAP Dihydroxyacetone phosphate.

DHA Docosahexaenoic acid.
DMSO Dimethyl sulphoxide.
DNA Deoxyribonucleic acid.

EDTA Ethylenediamine tetra-acetic acid.
ELISA Enzyme-linked immunosorbent assay.

FA Fatty acids.

FCS Fetal calf serum.

FGS Female genital schistosomiasis.

For. Forward.

G3P Glycerol-3-phosphate.

GPD Glycerol phosphate dehydrogenase.

GSH Tripeptide glutathione. GW4869 Inhibitor of nSMase.

h hour(s).

HIV Human immunodeficiency virus.

 H_2O_2 Hydrogen peroxide.

IDT Integrated DNA Technologies.

Ig Immunoglobulin.
IF Immunofluoresence.
IFN-γ Interferon-gamma.

List of Abbreviations

IL Interleukin. kDa kilo Dalton.

LPL Lipoprotein lipase.

MBCD Methyl- β-cyclodextrine.
MgCl₂ Magnesium chloride.
Mn(OAc)₂ Manganese acetate.
Na₂CO₃ Sodium carbonate.
NH₄Cl Ammonium chloride.
NaHCO₃ Sodium bicarbonate.
Na₂CO₃ Sodium carbonate.

NaH₂PO₄ Dibasic sodium phosphate. Na₂HPO₄ Monobasic sodium phosphate. N-SMase Neutral sphingomyelinase.

Oxa Oxamniquine.

OZs Secondary ozonides (Trioxolanes).

PAF Platelets-activating factor.

PBMCs Peripheral blood mononuclear cells.

PBS Phosphate buffered saline.

PBS-T Phosphate buffered saline-Tween.

PKC Protein kinase C. PLC Phospholipase C.

POD Peroxidase. PZQ Praziquantel.

RA Radiation-attenuated cercariae.

Rev. Reverse.

RNA Ribonucleic acid. r.p.m round/minute.

RPMI medium Rosewell park memorial institute medium.
RT-PCR Reverse transcription-polymerase chain

reaction.

SBSP Schistosome Biological Supply Program.

SD Standard deviation.

SEM Scanning electron microscopy.

SM Sphingomyeline. SMase Sphingomyelinase.

SMP Surface membrane antigens.

List of Abbreviations

Sup Supernatant.

TBE Tris / Boric Acid / EDTA.

TBRI Theodor Bilharz Research Institute.
 TEM Transmission electron microscopy.
 TGR Thioredoxin glutathione reductase.
 TGF-β Transforming growth factor-beta.

Th1 T helper cell type 1. Th2 T helper cell type 2.

TNF- α Tumour necrosis factor-alpha.

TPA Phorbol esters. UV Ultra Violet.

WHO World Health Organization.

LIST OF TABLES

	Pages
Table (1): Detailed primers and conditions used for RT-	60
PCR. Table (2): In Vitus Effect of ECS on Subistassemicidal	7.4
Table (2): In Vitro Effect of FCS on Schistosomicidal	74
Activity of Arachidonic Acid on Adult	
Schistosomes.	7.0
Table (3): In Vitro Schistosomicidal Concentration	76
of Arachidonic Acid on Adult Schistosomes	77
Table (4): In Vitro Effects of Arachidonic Acid on Adult	77
and Juvenile Schistosomes.	70
Table (5): In Vitro Effect of nSMase Inhibitors on	79
Schistosomicidal Activity of Arachidonic Acid.	1 4 4
Table (6): Total Worm Burden in S. mansoni Infected	144
and Treated Hamster Groups with Pure ARA Oil	
and ARA Capsule.	1 47
Table (7): Total Worm Burden in S. mansoni Infected	147
and Treated Hamster Groups with Pure ARA	
Oil/ARA milk or ARA Capsule/ARA milk.	151
Table (8): Total Egg Count in <i>S. mansoni</i> Infected and	151
Treated Hamster Groups with Pure ARA oil or	
ARA capsule.	1.50
Table (9): Total Egg Count in <i>S. mansoni</i> Infected and	152
Treated Hamster Groups with ARA oil/ARA	
milk or ARA capsule/ARA milk.	155
Table (10): Granuloma Count and Diameter in S.	155
mansoni Control and Treated Groups.	102
Table (11): Reactivity of Infected Control Sera against	183
Sup1 Antigen.	104
Table (12): Reactivity of Treated Hamster sera with	184
Pure ARA Oil against Sup1 Antigen.	105
Table (13): Reactivity of Treated Hamster Sera with	185
ARA Capsules against Sup1 Antigen. Table (14): Pagetivity of Treated Hamster Same with	107
Table (14): Reactivity of Treated Hamster Sera with	186
Pure ARA Oil+ARA Milk against Sup 1	

<u>List of Tables</u>

Antigen.	
Table (15): Reactivity of Treated Hamster Sera with	187
ARA Cap. + ARA Milk against Sup1 Antigen.	
Table (16): Reactivity of Infected and Treated Hamster	188
Groups.	
Table (17): Total Worm Burden in S. haematobium	194
Infected and Treated Hamster Groups [Exp. 1].	
Table (18): Total Worm Burden in S .haematobium	198
Infected and Treated Hamster Groups [Exp. 2].	
Table (19): Total Egg Count in S. haematobium Infected	201
and Treated Hamster Groups.	
Table (20): Granuloma Count and Diameter in S.	204
haematobium Control and Treated Groups.	
Table (21): Reactivity of Infected Control Sera against	226
Sup1 Antigen.	
Table (22): Reactivity of Treated Hamster Sera with	227
Pure ARA Oil against Sup1 Antigen.	
Table (23): Reactivity of Treated Hamster Sera with	228
ARA Capsules against Sup1 Antigen.	
Table (24): Reactivity of Treated Hamster Sera with	229
Pure ARA Oil+ARA Milk against Sup1 Antigen.	
Table (25): Reactivity of Treated Hamster Sera with	230
ARA Cap. + ARA Milk against Sup1 Antigen.	
Table (26): Reactivity of Infected and Treated Hamster	231
Groups with and without ARA Milk.	

LIST OF FIGURES

		Pages
Fig.	(1): Prevalence of Schistosomiasis.	3
_	(2): Arachidonic Acid Structure.	32
_	(3-5): Scanning Electron Micrographs of	87
U	Adult S. mansoni (Control Group).	
Fig.	•	89
U	Adult S. haematobium (Control Group).	
Fig.		91
U	Adult S. mansoni (2.5 mM ARA).	
Fig.		93
Ü	Adult S. haematobium (2.5 mM ARA).	
Fig.	(15-17): Scanning Electron Micrographs of	95
Ü	Adult S. mansoni (10 mMARA).	
Fig.	(18-20): Scanning Electron Micrographs of	97
	Adult S. haematobium (10 mM ARA).	
Fig.	(21&22): Scanning Electron Micrographs of 3-	99
	Weeks Old S. mansoni (Control Group).	
Fig.	(23&24): Scanning Electron Micrographs of 4-Week	101
	Old S. mansoni (Control Group).	
Fig.	(25&26): Scanning Electron Micrographs of	103
	8-Weeks Old S. haematobium (Control Group).	
Fig.	(27-30): Scanning Electron Micrographs of 10-	105
	Weeks Old S. haematobium (Control Group).	
Fig.	(31&32): Scanning Electron Micrographs of 3-	107
	Weeks Old S. mansoni (2.5 mM ARA).	
Fig.	(33): Scanning Electron Micrograph of 4-Weeks	109
	Old S. mansoni (5 mM ARA).	
Fig.	(34-36): Scanning Electron Micrographs of	111
	8-Weeks Old S. haematobium (5 mM ARA).	
Fig.	(37-40): Scanning Electron Micrographs of	113
	10-Weeks Old S. haematobium (5 mM ARA).	
Fig.	(41): Transmission Electron Micrograph of Adult	121
	S. mansoni (Control Group).	

Fig. (42&43):Transmission Electron Micrographs of	123
Adult S. haematobiumi (Control Group). Fig. (44): Transmission Electron Micrograph of Adult	125
S. mansoni (2.5 mM ARA). Fig. (45): Transmission Floatron Micrograph of Adult	125
Fig. (45): Transmission Electron Micrograph of Adult <i>S. haematobium</i> (2.5 mM ARA).	125
Fig. (46&47): Transmission Electron Micrographs of	127
Adult S. mansoni (10 mM ARA).	100
Fig. (48&49): Transmission Electron Micrographs of Adult <i>S. haematobium</i> (10 mM ARA).	129
Fig. (50): Transmission Electron Micrograph of 3-	131
Weeks Old S. mansoni (Control Group).	
Fig. (51): Transmission Electron Micrograph of 4-Weeks Old <i>S. mansoni</i> (Control Group).	131
Fig. (52): Transmission Electron Micrograph of 8-Weeks	133
Old S. haematobium (Control Group).	133
Fig. (53): Transmission Electron Micrograph of 10-	133
Weeks Old S. haematobium (Control Group).	
Fig. (54): Transmission Electron Micrograph of 3-Weeks	135
Old S. mansoni (2.5 mM ARA).	
Fig. (55): Transmission Electron Micrograph of 4-Weeks	135
Old S. mansoni (5 mM ARA).	
Fig. (56&57): Transmission Electron Micrographs of	137
8-Weeks Old S. haematobium (5 mM ARA).	
Fig. (58&59): Transmission Electron Micrographs of	139
10-Weeks Old S. haematobium (5 mM ARA).	
Fig. (60): Total Worm Burden in S. mansoni Infected and	143
Treated Hamster Groups with Pure ARA Oi and	
ARA Capsule	
Fig. (61): Total Worm Burden in S. mansoni Infected and	146
Treated Hamster Groups with Pure ARA Oil/ARA	
milk or ARA Capsule/ARA milk.	
Fig. (62): Total Egg Count in S. mansoni Infected and	150
Treated Hamster Groups with Pure ARA Oil or	
ARA Capsule	