

Integration of Well Log Evaluation and Seismic Attribute Analysis and its Impact on the Reserve Estimation for Some Reservoirs on the North East, Onshore Wells Nile Delta

A thesis submitted for the degree of Master of Science as a partial fulfilment for the requirements of Master degree of Science in Applied Geophysics

By

Doha Monier Abd El Aziz Mohamed El Dahan

B.Sc. in Geophysics (2008) Faculty of Science – Ain Shams University

Supervised by

Dr. Abdallah Mahmoud Assistant professor of Geophysics Geophysics Department – Faculty of Science – Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Lecturer of Geophysics Geophysics Department – Faculty of Science – Ain Shams University

Dr. Samir Mohamed Raslan Subsurface Assistant General Manager Exploration Department – Pharaonic Petroleum Company

<u>Note</u>

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment of the requirements of the Master degree of Science in Geophysics.

Besides the research work materialized in this thesis, the candidate has attended six post-graduate courses for one year in the following subjects:

- 1. Geophysical field measurements
- 2. Numerical analysis and computer programming
- 3. Petrophysical Properties of Rocks and Advanced Well Logging
- 4. Formation Evaluation and Reservoir Evaluation
- 5. Subsurface Geology and Geophysical Prospecting
- 6. Sedimentary Basin Analysis and Fluid Dynamics

The candidate has successfully passed the final examinations of these courses.

In fulfillment of the language requirement of the degree, the candidate also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Salah Abdel Wahab

Acknowledgments

Thanks to Allah who guided me to bring this thesis to the light. I would like to express my deep and grateful thanks to Dr. Abdallah Mahmoud, Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for supervising this study, his valuable help and comments, as well as reading and reviewing the manuscript. I would also like to express my sincere thanks to Dr. Azza Abd El-Latif El-Rawy, Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for the supervision, support needed for this study, and reading and reviewing the manuscript. I would also like to thank Dr. Samir Raslan, Subsurface Assistant General Manager, Pharaonic Petroleum Company, for providing the data and outline of the study.

I would like to thank Prof. Salah Abdel Wahab, Head of the Geophysics Department, Faculty of Science, Ain Shams University, for his support to finish this study.

I also thank Dana Gas and the Data and Information Center (Egyptian General Petroleum Corporation) for providing the data used in the study.

I would also like to express my sincere gratitude and heart-felt thanks to Mr. Ali Maher, Senior Geophysicist, Rashid Petroleum Company for his generous efforts and support.

I would like to express my deep and grateful thanks to my dear husband, Amr Moustafa for his encouragement, useful leading and generous advice.

No words can adequately express the deep sense of gratitude towards my family for their patience, fortitude and understanding. Their love and devotion kept me going and I am extremely grateful to them for their encouragement and support.

<u>Abstract</u>

The Nile Delta basin is a highly prolific gas and condensate province with discoveries from different plays. Proven reservoirs within the Nile Delta cone vary in age from Oligocene to Pleistocene. Exploration activities started in 1947 by Standard Oil Company of Egypt that carried out a number of reconnaissance gravity surveys. In 1967, the International Egyptian Oil Company (IEOC) drilled the Abu Madi-1 well and made the first gas discovery from the Messinian Abu Madi Formation in the onshore Nile Delta. The Messinian is considered as one of the favored plays in the Nile Delta due to its relatively shallow depth and relatively normal pressure. In 2004, El Wastani Petroleum Company drilled El Wastani East-2 well situated in the West El Manzala concession and encountered hydrocarbons in the Messinian Abu Madi Formation. The company has focused on this play and made a series of discoveries.

This study involves seismic interpretation and petrophysical evaluation of a number of wells in the West El Manzala area. The seismic interpretation concludes the presence of two 4-way dip closures dissected by a series of normal faults. Seismic amplitude extractions show the presence of high amplitudes within parts of the study area which reflect the reservoir presence.

Petrophysical evaluation on wells in the study area shows the presence of hydrocarbons within the Messinian Abu Madi sands with good reservoir parameters. Analysis of the Modular Dynamic Tester data confirms the presence of hydrocarbons. Observations on the seismic amplitude

1

extractions and the petrophysical evaluation results led to the following conclusions:

- There is good negative correlation between VSH and RMS amplitude, where areas of low VSH content correspond to areas of high amplitude anomalies.
- There is fair correlation between net sand thickness and RMS amplitude.
- 3- There is fair correlation between HC saturation and RMS amplitude.
- 4- It is difficult to establish a correlation between seismic amplitudes and porosity. This may be because porosity is affected by a number of factors like shaliness of the rock, compaction and cementation.

From the volumetric calculations, it is clear that the eastern closure at the Lower Abu Madi level holds the highest volumes of hydrocarbons (97 bcf mean inplace gas), while the western closure of the Lower Abu Madi and the eastern closure of the Upper Abu Madi hold less volumes (51 bcf and 2.9 bcf inplace gas respectively).

Contents

	Page
Acknowledgments	iii
Contents	iv
List of Tables	viii
List of Figures	ix
Abstract	1
Chapter 1: Introduction	
1.1 Location of the Study Area	3
1.2 Exploration History and activity	4
1.3 Aim and Objectives	6
1.4 Available Data	7
1.5 Methodology and Techniques	7
Chapter 2: Regional Geological Setting	
2.1 Introduction	9
2.2 Subsurface Statigraphy of the Nile Delta	11
2.2.1 Paleozoic	14
2.2.2 Mesozoic	15
2.2.3 Cenozoic	16
2.2.3.1 Paleogene	16
2.2.3.1.1 Paleocene	17
2.2.3.1.2 Eocene	17
2.2.3.1.3 Oligocene	17
2.2.3.2 Neogene	18
2.2.3.2.1 Miocene	18
2.2.3.2.1.1 Early Miocene	18
2.2.3.2.1.2 Middle Miocene	19
2.2.3.2.1.3 Late Miocene	19
Sidi Salim Formation	20
Qawasim Formation	20
Abu Madi Formation	21
2.2.3.4 Pliocene-Pleistocene	22
Kafr El Sheikh Formation	22
El Wastani Formation	23
Bilqas – Mit Ghamr Formation	23

2.3 Structural Framework of the Nile Delta	24
2.4 Tectonic History of the Onshore Nile Delta	25
Chapter 3: Seismic Data Interpretation	
3.1 Introduction	29
3.2 Available Data of the Study Area	30
3.3 Acquisition Parameter of the Seismic Data	31
3.3.1 Recording Parameters	31
3.3.2 Source	32
3.3.3 Reciever	32
3.3.4 Recording	33
3.4 Seismic Data Processing	33
3.4.1 Processing Sequence	33
3.5 Seismic to Well Tie	35
3.5.1 Synthetic Generation	36
3.6 Seismic Interpretation	42
3.6.1 Interpretation of the Messinian Tops	44
3.6.2 Faults	49
3.6.3 Construction and interpretation of structural maps	50
3.6.3.1 Two- Way Time Contour Maps	50
3.6.4 Depth Conversion	58
3.6.4.1 Depth Structure Contour Maps	58
Chapter 4: Seismic Attributes	
4.1 Introduction	62
4.2 Time-Based Attributes	64
4.3 Amplitude Attributes Extraction	66
4.3.1 RMS Amplitude Attribute	67
4.3.1.1 Amplitude-Based Attributes	67
4.4 Coherence Attributes Estimation	73
4.4.1 Coherence Algorithms	75
4.5 Spectral Decomposition Attributes Estimation	83
4.5.1 Algorithms	85
4.5.2. Methodology	89
4.5.2.1 Reconnaissance tuning cube	89
4.5.2.2 Composite frequency image (RGB blending)	89

4.6 Geology of the Study Area	100
4.6.1 Top Upper Abu Madi	100
4.6.2 Top Lower Abu Madi	101
Chapter 5: Petrophysical Analysis	
5.1 Introduction	109
5.2 Available Well Data	109
5.3 Evaluation of Petrophysical Properties of the Studied Wells	110
5.3.1 Determination of Formation Temperature (FT)	111
5.3.2 Correction of the Mud Resistivities (Rm, Rmc and Rmf)	111
5.3.3 Determination of the Formation Water Resistivity (Rw)	112
5.3.4 Determination of shale volume	114
5.3.4.1 Single clay indicator	114
5.3.4.2 Double clay indicator	115
5.3.5 Porosity Logging	118
5.3.5.1 Total Porosity Determination (ΦT) From	118
Density Log	
5.3.5.2 Effective Porosity Determination (ΦE) From Neutron-	119
` Density Logs	
5.3.5.3 Effective Porosity Determination (ΦE) From	121
` Density Logs	
5.3.5.4 Effective Porosity Determination From Neutron-	120
` Density Logs	
5.3.5 Water Saturation	122
5.3.6.1. Determination of Water Saturation by Archie	122
Equation	
5.3.6.2. Determination of Effective Water Saturation by	122
Indonesia Equation	
5.3.6.3 Determination of Hydrocarbon Saturation (Sh)	126
5.4 Lithological Identification	127
5.4.1 Neutron-Density Crossplot	127
5.4.2 Photoelectric factor-Density Crossplot	134
5.4.3 M-N Crossplot	140
5.4.4 Matrix Identification Density Crosssplot	143
5.4.5 Clay Minerals Identification	144
	1 4 4

5.4.5.2 PEF-Th/K Cross plot	144
5.4.5.3 PEF-K Crossplot	144
5.5 Cutoff and Pay flags	151
5.6 Litho-Saturation Plots	152
5.7 Horizontal Distribution of Petrophysical Parameters	153
5.7.1 Upper Abu Madi Distribution Maps	155
5.7.2 Lower Abu Madi Pay2 Distribution Maps	156
5.7.3 Lower Abu Madi Pay2 Distribution Maps	157
5.8 MDT Analysis	159
5.9 The impact of Log Evaluation and Seismic Attributes in the Reserves	161
Estimation	
Chapter 7: Summary and Conclusions	168
References	175
الملخص العربي	182

List of Tables

Table	Page
Table 2.1: Stratigraphic classification of the Nile Delta by El Heiny	18
and Enani (1996)	
Table 4.1: Fault throws calculated at the Top Upper Abu Madi and	104
Top Lower Abu Madi surfaces	
Table 5.1: Available well logging data for 8 wells in the study area	110
Table 5.2 : Common Clay minerals for identification	147
Table 5.3: Pay cutoff parameters from internal Report	151
Table 5.4: Weighted petrophysical properties for Upper Abu Madi	154
Formation	
Table 5.5: Weighted petrophysical properties for Lower Abu Madi	154
Formation	
Table 5.6: Pressure gradients calculated from MDT data	160
Table 5.7: GWC data of the study area	160
Table 5.8: Petrophysical parameters and ranges calculated over	162
Upper Abu Madi Reservoir	
Table 5.9: Petrophysical parameters and ranges calculated over of	162
Lower Abu Madi Reservoir	
Table 5.10: Inputs and Volumes for Upper Abu Madi eastern closure	166
Table 5.11: Inputs and Volumes for Lower Abu Madi eastern closure	166
Table 5.12: Inputs and Volumes for Lower Abu Madi western closure	167

List of Figures

Figure	Page
Figure 1.1: Location map of the study area	3
Figure 2.1: Surface geological map of the Nile Delta region (from EGSMA,	10
1981)	
Figure 2.2: Generalized stratigraphic column of the study area (Centruion	12
internal report, 2008)	
Figure 2.3: Correlation panel between some of the wells in the study area	13
(Centruion internal report, 2008)	
Figure 2.4: Stratigraphic chart showing the rock units in northern Egypt and	14
the tectonic events from Jurassic to Recent. Complied from EGPC (1994)	
and Schlumberger (1984)	20
Figure 2.5: Stratigraphic scheme of the north Nile Delta from middle	20
Milocelle to early Phocelle after EGPC (1994) and El-Heiny and Analii (1996)	
Figure 2.6: Geological domains of the Nile Delta and NE Mediterranean	25
after Abdel Aal et al. (2001). Hydrocarbon fields are shown in red color	25
Figure 2.7: Paleogeographic maps of the Nile Delta and surrounding areas	27
from the Triassic to Quaternary after Schandelmeier et al. (1997)	21
Figure 3.1: 2D saismic lines of the study area	30
Figure 3.2: The available data for seismic trace construction	36
Figure 3.3: Statistical wavelet extraction	30
Figure 3.4: Dabyaa 2 before check-shot correction	40
Figure 3.5: Dabyad 2 service effects shot correction	40
Figure 3.6: Dabyad 2 effect shot correction	40
Figure 3.7: Dabyaa 2 before synthetic	41
Figure 3.8: Dabyaa 2 after synthetic	41
Figure 3.9: Seismic interpretation of XI 1889	45
Figure 3.10: Seismic interpretation of XL 1843	45
Figure 3.11: Seismic interpretation of XL 1723	46
Figure 3.12: Seismic interpretation of XL 1760	46
Figure 3.13: Seismic interpretation of IL 2536	47
Figure 3.14: Seismic interpretation of IL 2439	47
Figure 3.15: Seismic interpretation of IL 2190	48
Figure 3.16: Seismic interpretation of IL 2134	48
Figure 3.17: Fault interpretation of XL 1889	50
Figure 3.18: Fault interpretation of XL 1843	50
Figure 3.19: Fault interpretation of XL 1723	51
Figure 3.20: Fault interpretation of XL 1760	51
Figure 3.21: Fault interpretation of IL 2536	52
Figure 3.22: Fault interpretation of IL 2439	52

Figure 3.23: Fault interpretation of IL 2190	53
Figure 3.24: Fault interpretation of IL 2134	53
Figure 3.25: Time grid map for Top Upper Abu Madi	54
Figure 3.26: Time grid map for Top Gas Sand Upper Abu Madi	55
Figure 3.27: Time grid map for Top Lower Abu Madi	56
Figure 3.28: Time grid map for Base Lower Abu Madi	57
Figure 3.29: Time vs. depth plot from El Wastani East-2 well check-shot	58
data. Red line represents the depth of the casing shoe	
Figure 3.30: Time-depth graph of all wells in the area showing the best-fit	59
line	
Figure 3.31: Top Upper Abu Madi Depth structure contour map	59
Figure 3.32: Top Gas Sand Upper Abu Madi Depth structure contour map	60
Figure 3.33: Top lower Abu Madi Depth structure contour map	60
Figure 3.34: Base lower Abu Madi Depth structure contour map	61
Figure 4.1: Isochron map of Upper Abu Madi	65
Figure 4.2: Isochrons map of Lower Abu Madi	66
Figure 4.3: RMS computation	67
Figure 4.4: RMS amplitude attributes map at the top of Upper Abu Madi	69
Figure 4.5: RMS amplitude attributes map at window =50msec. above the	69
top Abu Madi Gas Sand	
Figure 4.6: RMS amplitude attributes map at window =50msec. below the	70
top Abu Madi Gas Sand.	
Figure 4.7: RMS amplitude attributes map at the top Abu Madi Gas Sand	70
showing sand fairways	
Figure 4.8: RMS amplitude attributes map at Top Lower Abu Madi	71
Figure 4.9: RMS amplitude attributes map at window =50 msec. above Top	71
Lower Abu Madi	
Figure 4.10: RMS amplitude attributes map at window =50 msec. below	72
Top Lower Abu Madi	
Figure 4.11: RMS amplitude attributes map at Top Lower Abu Madi	72
showing sand fairways	
Figure 4.12: Examples of lateral variations in seismic waveforms	74
Figure 4.13: The first coherency algorithm	76
Figure 4.14: Schematic diagram showing the steps used in semblance	77
estimation of coherence	
Figure 4.15: (a) Elliptical analysis window and (b) rectangular analysis	78
window, each centered about an analysis point defined by the length of	
major axis a, the length of minor axis b, and the azimuth of major axis ϕa ,	
the term $\phi 0$ indicates the azimuth of the inline seismic axis from north	
(after Chopra and Marfurt, 2010)	
Figure 4.16: Variance 3D volume for Top Upper Abu Madi.	79
Figure 4.17: Variance 3D volume for Top Upper Abu Madi with Faults	

Figure 4.18: Variance 3D volume for Top Upper Abu Madi with faults and	80
channel fairways	
Figure 4.19: Variance 3D volume for Top Lower Abu Madi	80
Figure 4.20: Variance 3D volume for Top Lower Abu Madi with faults.	81
Figure 4.21: Variance 3D volume for Top Lower Abu Madi with faults and	82
channel fairways	
Figure 4.22: Frequency decomposition and RGB color blending workflow	85
Figure 4.23: Amplitude spectrum of a thin-bed reflection (after Partyka et	86
al., 1999)	
Figure 4.24: A simple wedge model illustrates the interference that occurs	86
as a function of temporal thickness and frequency (after Partyka et al.,	
1999)	
Figure 4.25: Diagram of the spectral decomposition methodology	88
Figure 4.26: Amplitude spectrum ranges	90
Figure 4.27: 10 Hz amplitude map	90
Figure 4.28: 15 Hz amplitude map	91
Figure 4.29: 20 Hz amplitude map	91
Figure 4.30: 25 Hz amplitude map	92
Figure 4.31: 30 Hz amplitude map	92
Figure 4.32: 35 Hz amplitude map	93
Figure 4.33: 40 Hz amplitude map	93
Figure 4.34: 45 Hz amplitude map	94
Figure 4.35: 50 Hz amplitude map	94
Figure 4.36: 55Hz amplitude map	95
Figure 4.37: 60 Hz amplitude map	95
Figure 4.38: 65 Hz amplitude map	96
Figure 4.39: RGB color blended maps at top Upper Abu Madi by applying	96
different windows (50 & 40 msec.)	
Figure 4.40: RGB color blended maps at top Upper Abu Madi by applying	97
different windows (30 &20 msec.)	
Figure 4.41: RGB color blended maps for Upper Abu Madi by applying	97
different windows (10 msec. above top, and between top and base)	
Figure 4.42: RGB color blended maps above top Lower Abu Madi by	98
applying different windows (40 & 30 msec.)	
Figure 4.43: RGB color blended maps above top Lower Abu Madi by	98
applying different windows (20 & 10 msec.)	
Figure 4.44: RGB color blended maps for Lower Abu Madi by applying	99
different windows (10 msec. below base, and between top and base)	
Figure 4.45: Top Upper Abu Madi depth structure contour map showing	101
two 4-way dip closures (marked by blue outlines)	
Figure 4.46: Top Lower Abu Madi depth structure contour map showing	102
two 4-way dip closures (marked by blue outlines)	

Figure 4.47: Seismic section showing the angular unconformity between	103
the Messinian Abu Madi Formation and the underlying Tortonian Qawasim	
Formation	
Figure 4.48: Isochron map of the Upper Abu Madi unit (C.I. = 10 msec.)	104
Figure 4.49: Isochore map of the Upper Abu Madi unit (C.I. = 10 m)	105
Figure 4.50: Isochron map of the Lower Abu Madi unit (C.I. = 10 msec.)	105
Figure 4.51: Isochore map of the Lower Abu Madi unit (C.I. = 20 m).	106
Figure 4.52: RMS amplitude extraction at top Upper Abu Madi grid	107
showing high amplitude areas reflecting reservoir fairways	
Figure 4.53: RMS amplitude extraction at top Upper Abu Madi grid with	107
the reservoir fairway polygons	
Figure 4.54: RMS amplitude extraction at top Lower Abu Madi grid showing	108
high amplitude areas reflecting reservoir fairways	
Figure 4.55: RMS amplitude extraction at top Lower Abu Madi grid with the	108
reservoir fairway polygons	
Figure 5.1: Pickett's plot for Upper Abu Madi for EW-8 well	113
Figure 5.2: Pickett's plot for Lower Abu Madi for EW-15well	113
Figure 5.3: Comparison between Vsh from GR and from Neutron-Density	117
Figure 5.4: An example of porosity logs recorded on EWE-2 well with core	121
porosity taken from the same well	
Figure 5.5: Comparison between Sw calculated from Archie and Indonesian	124
equations for the EW-6 well	
Figure 5.6: Comparison between Sw calculated from Archie and Indonesian	125
equations for the Dabayaa-2 well	
Figure 5.7: NPHI-RHOB crossplot for Upper Abu Madi in Dabayaa-2 well	128
Figure 5.8: NPHI-RHOB crossplot for Upper Abu Madi in Dabayaa-3 well	129
Figure 5.9: NPHI-RHOB crossplot for Upper Abu Madi in EW-8 well	129
Figure 5.10: NPHI-RHOB crossplot for Upper Abu Madi in EWE-2 well	130
Figure 5.11: NPHI-RHOB crossplot for Lower Abu Madi in Dabayaa-2 well	130
Figure 5.12: NPHI-RHOB crossplot for Lower Abu Madi in Dabayaa-3 well	131
Figure 5.13: NPHI-RHOB crossplot for Lower Abu Madi in EW-6 well	131
Figure 5.14: NPHI-RHOB crossplot for Lower Abu Madi in EW-8 well	132
Figure 5.15: NPHI-RHOB crossplot for Lower Abu Madi in EW-13 well	132
Figure 5.16: NPHI-RHOB crossplot for Lower Abu Madi in EW-15 well	133
Figure 5.17: NPHI-RHOB crossplot for Lower Abu Madi in EWE-2 well.	133
Figure 5.18: NPHI-RHOB crossplot for Lower Abu Madi in EWW-2 well	134
Figure 5.19: PEF-RHOB crossplot for Upper Abu Madi in Dabayaa-2 well	135
Figure 5.20: PEF-RHOB crossplot for Upper Abu Madi in Dabavaa-3 well	135
Figure 5.21: PEF-RHOB crossplot for Upper Abu Madi in EWE-2 well	136
Figure 5.22: PEF-RHOB crossplot for Upper Abu Madi in EW-8 well	136
Figure 5.23: PEF-RHOB crossplot for Lower Abu Madi in Dabavaa-2 well	137
Figure 5.24: PEF-RHOB crossplot for Lower Abu Madi in EW-13 well	137

38
38
39
39
40
42
42
43
43
48
48
49
49
50
50
51
51
53
53 56
53 56 57
53 56 57 58
53 56 57 58 59
53 56 57 58 59 63
53 56 57 58 59 63
53 56 57 58 59 63 63
53 56 57 58 59 63 63
53 56 57 58 59 63 63 63
53 56 57 58 59 63 63 64
53 56 57 58 59 63 63 64
53 56 57 58 59 63 63 64 64
53 56 57 58 59 63 63 64 64 64
53 56 57 58 59 63 63 63 64 64 64
53 56 57 58 59 63 63 64 64 64 65 65
53 56 57 58 59 63 63 64 64 65 65
33444444444