

The Role of Non Contrast MR Imaging in diagnosis of Pulmonary Embolism

Thesis

Submitted for Partial Fulfillment of Master Degree in **Radiodiagnosis**

Presented by

Iman Sherif Ahmad Mohamed

(M.B.B.Ch)

Supervised by

Prof. Dr. Laila Ahmad Abdurrahman

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Osman

Lecturer of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain shams University 2017

سورة التوبة الآية (٥٠١)

First of all, thanks to ATTAM for helping me to carry out this work.

I would like to express my deepest feeling of gratitude to Dr. Taila Ahmad Abdurrahman, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. For her valuable instruction, her vast experience and meticulous supervision, her continuous encouragement and support in deed gave me a push to work hard.

All my respect to **Dr. Ahmed Mohamed Osman** Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University; for his effort, supervision and encouragement.

I dedicate this work to my family especially my dad who has supported me all over my life and made me who I am now and without him I would not have achieved anything.

Iman Sherif Ahmad Mohamed

Contents

Subjects	Page
List of abbreviation	I
List of tables	IV
List of figures	VI
Introduction	
Aim of the work	
Review of literature	
• Chapter (1): MRI anatomy of the Pulmonar	y Artery4
• Chapter (2): Pathology of Pulmonary Embo	olism20
• Chapter (3): Technical Considerations	
Patients and methods	
Results	
Illustrative Cases	
Discussion	
Limitations and Recommendations	
Summary and Conclusion	
References	

Arabic summary

List of Abbreviations

AA	:	Ascending Aorta
ba	:	Bronchial Arteries
BB	:	Black Blood
BMI	:	Body Mass Index
BNP	:	Brain Natriuretic Peptide
b-SSFP	:	Balanced Steady-State Free Precession
С	:	Confluence
СТА	:	CT Pulmonary Angiography
DA	:	Descending Aorta
DVT	:	Deep Vein Thrombosis
ER	:	Emergency Room
ESC	:	European Society of Cardiology
FN	:	False Negative
FOV	:	Field of View
FP	:	False Positive
FSE	:	Fast Spin Echo
GE	:	Gradient Echo
HCV+ve	:	Hepatitis C Virus positive
ICBT	:	Intercosto-bronchial Trunk
ICU	:	Intensive Care Unit
IR	:	Inversion Recovery
iv	:	Intrapulmonary Veins

LA	: left Atrium
LMB	: Left Main Branch
LPA	: left Pulmonary Artery
LV	: left ventricular
MOPETT	: Moderate Pulmonary Embolism Treated
	with Thrombolysis
MPA	: Main Pulmonary Trunk
MR-PA	: Magnetic Resonance-pulmonary
	Angiography
NT-proBNP	: N-terminal prohormone BNP
OCP	: Oral Contraceptive Pills
PE	: Pulmonary Embolism
PESI	: Pulmonary Embolism Severity Index
PFO	: Patent Foramen Ovale
RMB	: Right Main Branch
RPA	: Right Pulmonary Artery
SD	: Standard Deviation
SSFP	: Steady-state Free Precession
SVC	: Superior Vena Cava
TE	: Echo Time
TI	: Inversion Time
TN	: True Negative
TOF MRA	: Time-of Flight MR Angiography
TP	: True Positive

\mathfrak{F} Tist of Abbreviations \mathscr{Z}

TR	: Repetition Time
UFH	: Unfractionated Heparin
VTE	: Venous Thrombo-Embolism
WB	: White Blood

List of Tables

Tables	T:41.	Page
No.	Inte	No.
1	Echocardiographic signs of right-heart	32
	overload/failure	
2	Simplified pulmonary embolism severity	37
	index	
3	Two level wells score for estimating the	38
	clinical probability of pulmonary embolism	
	(PE)	
4	Illustrates the MR parameters of white blood	59
	(WB) and black blood (BB) sequences	
5	Reveals the higher incidence of PE between	62
	female patients in comparison to males.	
6	Show the incidence of risk factors among the	63
	study population.	
7	Show the percentage of the presenting	64
	symptoms among the study population.	
8	Illustrate the non-contrast MR-PA per vessel	66
	result analysis using CTPA as reference	
	modality.	

🕏 Tişt of Tables 🗷

Tables	T: 41a	Page
No.	Inte	No.
9	Illustrate the sensitivity and specificity of non-contrast MRPA in PE detection in comparison to CTPA as reference modality.	67
10	Illustrate the level of D-dimer test among the study population.	68

List of Figures

Fig.	T:41	Page
No.	The	No.
1	(a) Axial MRI showing the main pulmonary	5
	artery branching into right and left main	
	branches (b) Transverse section of thorax,	
	showing relations of pulmonary artery	
2	Showing Contrast Enhanced MRA of the	6
	Pulmonary vasculature	
3	Anatomy of pulmonary vasculature	6
4	A) axial CT showing normal right and left	8
	pulmonary arteries. B, C) Normal pulmonary	
	arteries. Curved planar reformatted images	
	show	
5	MRI using fast spin echo imaging and blood	9
	signal suppression (White blood sequence).	
6	Unilateral proximal interruption of the right	11
	pulmonary artery in a 52-year-old woman with	
	progressive shortness of breath and hemoptysis.	
7	Diagram shows the anomalous origin of a left	12
	pulmonary artery (P.A.) that arises from the	
	posterior aspect of the right pulmonary artery	

Fig.	Title	Page
No.		No.
8	Anomalous origin of the left pulmonary artery	13
	in a 60-year-old asymptomatic woman.	
9	Idiopathic dilatation of the pulmonary trunk in a	14
	55-year-old asymptomatic woman.	
10	Contrast-Enhanced Angiograms of Normal	15
	Pulmonary Veins, Two-dimensional	
	reformatted image.	
11	Contrast enhanced MRA show the relation	16
	between four pulmonary veins and pulmonary	
	arteries	
12	Diagrams illustrate the types of bronchial	17
	arterial supply.	
13	Schematic illustrates how the bronchial arteries	19
	(ba) supply the visceral pleura, airways	
14	Massive pulmonary embolism in a 35-year-old	27
	woman presenting with cardiac arrest and	
	asystole.	
15	European Society of Cardiology guidelines for	36
	the diagnosis of a) clinically suspected high-risk	
	pulmonary embolism (PE)	

Fig.	Title	Page
No.		No.
16	Principles of black-blood MR imaging with	43
	double IR pulses.	
17	Bright blood contrast from gradient echo pulse	46
	sequences.	
18	Cardiac synchronization can be performed in	53
	either of two ways: ECG triggering or ECG	
	Gating.	
19	Contrast enhanced CTPA axial cuts show (A)	70
	right lower lobe pulmonary artery thrombus	
	extending into posterior segmental artery (B).	
20	Non contrast MRPA (WB) sequence (A)	70
	showing right lower lobe pulmonary artery	
	thrombus extending into the posterior	
	segmental artery (B)	
21	CTPA axial cuts show (A) left main pulmonary	72
	artery thrombus causing partial occlusion and	
	(B) bilateral lower lobe segmental	
22	Non-contrast MRPA (WB) sequence ECG	72
	gated, axial cuts show (A) left main pulmonary	
	artery thrombus (B)	

Fig.	Title	Page
No.		
23	MDCT ECG gated pulmonary angiography,	74
	axial cut and shows right lower lobe segmental	
	pulmonary	
24	Non contrast MRPA (WB) sequence show right	74
	lower lobe segmental pulmonary artery	
	thrombus	
25	CTPA axial cut shows left upper lobar	76
	pulmonary artery thrombus and bilateral pleural	
	effusion.	
26	Non contrast MRPA (WB) sequence show left	76
	upper lobe PA thrombus appearing as a	
	hypointensity	
27	CTPA axial cut shows right and left main	78
	pulmonary arteries thrombosis.	
28	Non contrast MRPA (A) (WB) and (B) black	78
	blood (BB) sequence show right and left main	
	pulmonary arteries thrombosis.	
29	CTPA axial cuts show normal enhancemant of	80
	the main pulmonary trunk, right and left main	
	pulmonary branches. Minimal bilateral pleural	
	effusion was noted.	

Fig.	Title	Page
No.		No.
30	Non contrast MRPA (A) (WB) and (B) (BB)	80
	sequences show normal appearance of the main	
	pulmonary	
31	CTPA Axial cut shows a thrombus at left lower	82
	lobe pulmonary artery and the lingular branch	
	causing partial occlusion of the artery.	
32	Non-contrast MRPA (WB) sequence show left	82
	lower lobe pulmonary artery thrombus with loss	
	of the smoothness of posterior wall of lingular	
	artery branch	
33	Contrast enhanced MR angiography axial cut	84
	shows a thrombus at the right main trunk.	
34	Non contrast MRPA (WB) sequence still noted	84
	thrombus at the right main PA.	
35	CTPA axial cut shows thrombus at the	86
	bifurcation of the right main pulmonary artery.	
36	Non contrast MRPA (WB) sequence shows a	86
	thrombus at the bifurication of right main	
	pulmonary artery.	

Introduction

Pulmonary embolism (PE) is a serious condition responsible for significant morbidity and mortality. PE is currently the third leading cause of cardiovascular death worldwide, so it requires prompt diagnosis and treatment to prevent potentially deadly consequences (*Mudge et al.*, *2013*).

Pulmonary embolism occurs when a blood clotusually from the leg- travels to the lung and blocks the pulmonary artery or one of its branches (*Schlieter et al.*, 2012).

The diagnosis of acute PE is considered a clinical dilemma due to wide spectrum of multiple nonspecific signs and symptoms (*Goldhaber, 2001, a*). The D-dimer results are of bad positive laboratory test being positive in other situations rather than PE such as cancer and inflammation (*Lee and Ginsberg, 1998*).

CT pulmonary angiography (CTPA) is highly sensitive and specific for the diagnosis of PE and has become the imaging method of choice in patients suspected of having PE. The multislice CT offered high spatial and temporal resolution imaging in a short time scan. CTPA has the ability to assess the pulmonary tree down to the fifth