

Ain Shams University Faculty of Medicine Department of Anaesthesiology, Intensive Care and Pain Management

Spinal anaesthesia of the upper limb; the update and the future

Submitted for Partial Fulfillment of Master Degree in Anaesthesia

By Mohamed Amr Ahmad Anwar Ebeid

M.B.B.CH (Ain Shams University)

Supervised By

Prof. Dr. Mohamed Ismail El-Saidi

Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Hany Victor Zaki

Lecturer of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Amin Mohamed Al-Ansary

Lecturer of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Thanks and for most thanks to ATTAH, the merciful of All, who helped me for accomplishment of this work.

I would like to express my deepest gratitude to **Prof. Dr. Mohamed Ismail El-Saidi** Professor of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his indispensable help and guidance which were essential for the accomplishment of this work.

Tm indebted a great deal to **Dr. Hany Victor Zaki** Lecturer of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his kind guidance and cordial help. He gave much of his time and effort for supervision.

Also, I can never forget Dr. Amin Mohamed Al-Ansary, Lecturer of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his precious guidance and close supervision of the final details.

Finally I would like to thank my sweet family and my dearest wife; without whom I could have never made it through many tiring nights working on my lab. Thank you.

Mohamed Amr Ebeid

Contents

Subjects Pag	ge
List of Abbreviations	I
• List of tables	III
• List of figures	IV
• Introduction	1
• Aim of work	4
• Chapter 1: Anatomical Considerations of th	e upper
limb	5
• Chapter 2: Physiology of NeuromuscularTransm	nission14
• Chapter 3: Supraclavicular nerve block principl	es29
a- Continuous Peripheral nerve block	
b- Challenges and Complications	
c- Advantages	
d-Technique	
e- Pharmacology of Local Anaesthetics	
• Summary	
• References	
• Summary in Arabic	

List of Abbreviations

AIS	: Axon Initial Segment
BP	: Brachial Plexus
CNS	: Central nervous system
CPNB	: Continuous peripheral nerve block
CVS	: Cardiovascular system
DVT	: Deep venous thrombosis
EPSP	: Excitatory postsynaptic potential
GA	: General anaesthesia
GABA	: Gamma-Aminobutyric acid (γ-Aminobutyric
	acid)
IS	: Initial Segment
LA	: Local anaesthetic
LAST	: Local anaesthetic systemic toxicity
LD	: Longest distance
MODS	: Multiorgan damage syndrome
nAchRs	: Nicotinic acetylcholine receptors
PABA	: Para-aminobenzoic acid
PACU	: Postanaesthetic care unit
PONV	: postoperative nausea and vomiting
RA	: Regional Anaesthesia
RB	: Regional Block
SD	: Shortest distance

- **SD** : Somato-Dendritic
- **SDSU** : Same-day surgery unit
- **SIRS** : Systemic inflammatory response syndrome
- **TTX** : Tetrodotoxin
- **USG** : Ultrasound guided

List of Tables

Table No	Title	Page
Table (1)	Types of nerve fibres according to LA	26
	sensitivity, size and myelination.	
Table (2)	Properties of Local anaesthetics	84

List of Figures

Figure	Title	Page
1	Anatomy of brachial plexus	6
2	Clinical photograph demonstrating the	8
	anatomic landmarks of brachial plexus	
	blocks.	
3	Gray-scale evaluation of the	9
	supraclavicular brachial plexus. Note the	
	anechoic/circular nerve bundles (yellow	
	arrows) lateral to the subclavian artery.	
4	Original B-scans illustrating the different	12
	alignment of the divisions over the first rib	
	within a single individual. The	
	anteroposterior width of the plexus at this	
	level measures 10 mm on the right and 15	
	mm on the left.	
5	(a) The plexus has formed divisions whilst	12
	still apparently within the scalene muscles.	
	(b) The divisions first appear once the	
	plexus has emerged from between the	
	scalene muscles.	
6	In the majority of cases, an artery was seen	13
	crossing the brachial plexus in an	
	anteroposterior direction within the	
	supraclavicular fossa. This artery is most	
	likely either the superficial cervical or	
	suprascapular branch of the subclavian	
	artery.	

Figure	Title	Page
7	Spike threshold is low in the AIS. Overlaid	16
	voltage responses through current injection	
	into the AIS (blue) or soma (black) at the	
	threshold of action potential. Note the	
	depolarized voltage threshold in the soma	
	compared with the AIS.	
8	Structure of adult neuromuscular junction	23
	with its three cells which constitute the	
	synapse that include: the motor neuron,	
	muscle fibre and the Schwann cell. As the	
	nerve reaches its muscle fibres, and before	
	its attachment to muscle fiber surface, the	
	nerve divides into its branches which	
	innervate many individual muscle fibres.	
	The motor nerve then loses its myelin. A	
	synaptic cleft or gutter, which is made up	
	of a primary and many other secondary	
	clefts, splits the nerve from the muscle.	
	The muscle surface is sent into folds and	
	each fold contains acetylcholine receptors.	
9	A nerve stimulator delivers a small amount	33
	of electric current to the block needle to	
	facilitate nerve localization.	
10	In-plane (A) and out-of-plane (B)	36
	ultrasound approaches.	
11	The brachial plexus passes between the	38
	anterior and middle scalene muscles at the	
	level of the cricoid cartilage, or C6.	

Figure	Title	Page
12	Probe position for interscalene block. It is	38
	generally at the level of the cricoid	
	cartilage. Needle is introduced from lateral	
	side for in plane approach	
13	The in-plane approach to ultrasound-	39
	guided interscalene block. Needle is	
	adjacent to lateral aspect of the brachial	
	plexus (BP). Local anaesthetic (LA) is	
	seen surrounding the plexus.	
14	Use a small curvilinear probe in a	40
	parasagittal plane to visualize the brachial	
	plexus.	
15	Ultrasound image of the brachial plexus	41
	surrounding the axillary artery. The red dot	
	indicates the location of local anaesthetic	
	deposition.	
16	Multiple injection technique is more	42
	effective because of fascial separation	
	between nerves.	
17	Probe position for axillary block. The	44
	probe is parallel to the axillary crease. A	
	lateral entry of needle aids access to	
	musculocutaneous nerve	
18	Computed tomogram after an axillary	45
	block with 0.5% bupivacaine combined	
	with iodothalamate. Separate 10-mL	
	injections of solution were performed after	
	obtaining median and radial nerve	

Figure	Title	Page
	paresthesias transarterially. The contrast medium appears to remain in three separate compartments.	
19	Axillary block. The arm is abducted at right angles to the body. Distal digital pressure is maintained during needle placement and injection of the local anaesthetic.	46
20	Ultrasound image of axillary brachial plexus block.	46
21	Left needle:Supraclavicular block. The needle is systematically walked anteriorly and posteriorly along the rib until the plexus is located. Right needle: The three trunks are compactly arranged at the level of the first rib.	51
22	Supraclavicular block. The needle is inserted while mimicking a plumb-bob suspended over the needle entry site.	53
23	Supraclavicular block using nerve stimulator.	54
24	Ultrasound probe placement for supraclavicular block (in-plane technique).	55
25	Ultrasound image of the brachial plexus in the supraclavicular fossa.	56
26	Withdrawing Catheter over the cannula.	64
27	Mean morphine equivalents in mg. GA indicates general anaesthesia; RB, regional	72

Figure	Title	Page
	block; PACU, postanaesthesia care unit;	
	SDSU, same-day surgery unit.	
28	Mean hospital stay in min. GA indicates	73
	general anaesthesia; RB, regional block;	
	PACU, postanaesthesia care unit; SDSU,	
	same-day surgery unit.	
29	Needle In-Plane, Nerve in Short-Axis	78
	Approach.	
30	Needle Out-of-Plane, Nerve in Short Axis	79
	Approach.	
31	Needle In-Plane and Nerve in Long-Axis	81
	Approach.	
32	Chemical structure of Local anaesthetics.	83
33	Algorithm for the management of local	93
	anaesthetic systemic toxicity.	

Introduction

In 1908 August Bier, Professor of surgery at Berlin, described an unusual method of producing analgesia of a limb. He exsanguinated the arm or leg by means of a tourniquet, and injected a local anaesthetic solution into a vein. The recent resurgence of interest in this technique, culminating in this Symposium, is not only evidence of its usefulness even today, but also reflects the paucity of our knowledge of the exact mechanism of the production of anaesthesia in this method. However, in 1908 the principle was truly revolutionary, and we have good reason to be thankful that "Bier was always an innovator" (*Holmes, 1969*).

There has been an increase in the number of surgical procedures done in the ambulatory environment. Single-injection and infusion systems utilizing portable, disposable elastomeric pumps help provide safe pain control in this environment (*Bowens & Sripada, 2012*).

At the present time, the management of postoperative pain is the major indication for continuous brachial plexus (CPB) blockade. The development of sophisticate surgical techniques for microvascular and reattachment surgery of the upper extremity has increased the demand for continuous techniques. Good peripheral blood flow in the transplant during the operation and in the postoperative period is important. The use of continuous techniques is particularly warranted during the postoperative period to provide analgesia, sympathetic blockade, and increased blood flow to the injured extremity (*Kurt et al., 2005*).

Regional anesthesia of the upper extremity has several clinical applications and is reported to have several advantages over general anesthesia for orthopaedic surgery. These advantages, such as improved postoperative pain, decreased postoperative opioid administration, and reduced recovery time, have led to widespread acceptance of a variety of regional nerve block (*Bruce et al., 2012*).

Health economic comparisons relevant to this scenario are few and they provide inconsistent results. Nordin and colleagues found regional anaesthesia and general anaesthesia to be equally expensive for inguinal hernia surgery. On the contrary, Gonano and colleagues demonstrated ultrasound-guided interscalene block to be significantly more cost-effective than general anaesthesia for arthroscopic shoulder surgery (*Gupta & Hopkins*, 2012). The post-anaesthesia care unit (PACU) is an expensive and labor-intensive environment. The evidence of benefit from regional anaesthesia in decreasing PACU length of stay (LOS) or bypassing it completely in the ambulatory setting is well demonstrated. Patients receiving regional anaesthesia for rotator cuff surgery versus general anaesthesia were shown to bypass the PACU more often, report less pain, ambulate earlier, meet discharge criteria sooner, and be more satisfied with their care (*Corey et al.*, *2014*).