OBJECTIVE CLINICAL EVALUATION OF OSSEOINTEGRATED DENTAL IMPLANTS

Thesis

Submitted to the Oral and Maxillofacial Surgery Department

In Partial Fulfilment of the Requirements for the

Doctor Degree in Oral and Maxillofacial Surgery

Faculty of Oral and Dental Medicine

Cairo University

Ву

Ashraf Amin Ahmed Barghash BDS, (Alexandria University- 1980) MDS-Oral Surgery, (Cairo University- 1997)

2008

SUPERVISORS

PROF. DR. HUSSEIN ELTANANI

Professor of Oral and Maxillofacial Surgery

Faculty of Oral and Dental Medicine

Cairo University

PROF. DR. IBRAHIM ABD ALLAH

Professor of Oral and Maxillofacial Surgery

Faculty of Oral and Dental Medicine

Cairo University

ACKNOWLEDGEMENTS

First of all; praise to ALLAH, nothing could be done without his will.

I would like to express my deep gratitude to **Prof Dr. Hussein ElTanani**; Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University, for his valuable supervising. Prof. ElTanani provided his valuable time, knowledge and long experience with patience and wisdom in uncomplaining and tireless fashion. I greatly respect his professionalism, assistance and sincere encouragement which motivated me much. I would also like to thank him for trusting me and encouraging me to realize that I can accomplish.

I'm very grateful to **Prof. Dr. Ibrahim Abd ALLAH**; Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University, for his considerable effort and supervising. I really appreciate his constructive comments, scientific guidance, expert reviews, positive interaction, efficient support, knowledgeable guidance, stimulating suggestions, and help in different ways. I thank him for persuading me that it could be done

Further, it is a great pleasure to thank the staff of the Department of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University for their positive and friendly approach to me and my study.

A grateful acknowledgement to all nursing staff and technicians for their help, fruitful co-operation and fantastic hardworking during this study.

To:

All Members of Oral and Maxillofacial Department

Faculty of Oral and Dental Medicine

Cairo University

CONTENTS

	Page
1) Introduction	1
2) Review of Literature	4
Osseointegration	9
Some of Commonly Used Implant Systems	21
Implant Mobility and Osseointegration	28
3) Aim of the Study	39
4) Material and Methods	40
Patients	40
Clinical Examination	42
Radiographic Examination	44
Material	46
Methods	55
Assessment	80
5) Results	97
6) Discussion	137
7) Summary and Conclusion	146
8) References	150
9) Summary in Arabic	

LIST OF ABBREVIATIONS & SYMBOLS

Abbreviation/Symbol	Explanation
BI	Bleeding Index
BOP	Bleeding on Probing
CAD-CAM	Computer Aided Design/Computer Aided Manufacturing
CBC	Complete blood count
СТ	Computerized Tomography
e.g.	exempli gratia, «Latin» for example
et al	et alii «Latin» and others
FBR	Fast Bone Regeneration
FDA	Food and Drug Administration
GI	Gingival Index
HIP	Hot Isostatic Pressing
HVOF	High Velocity Oxy-Fuel
IBAD	Ion-Beam-Assisted Deposition
IS	Image Score
ITI	International Team for Implantology
KFT	Kidney Function Test
LFT	Liver Function Test
MGI	Mean Gingival Index
MPI	Mean Plaque Index
MPSD	Mean Peri-implant Sulcular Depth
MPTV	Mean Periotest Value
MSPSD	Mean Surface Peri-implant Sulcular Depth
MMSPSD	Mean of the Mean Surface Peri-implant Sulcular Depth
P	«Mathematical» Probability- Palatal/Lingual Surface
PI	Plaque Index
PSD	Peri-implant Sulcular Depth
PTV	Periotest Value
rpm	Revolutions Per Minute
SPI	Subperiosteal Implant
SSI	Smooth Staple Implant
SD	Standard Deviation
TE	Tapered Effect
TPS	Titanium Plasma Spraying- True Pressure Sensitive
VTPS	Vacuum Titanium Plasma Spraying

LIST OF FIGURES

Page

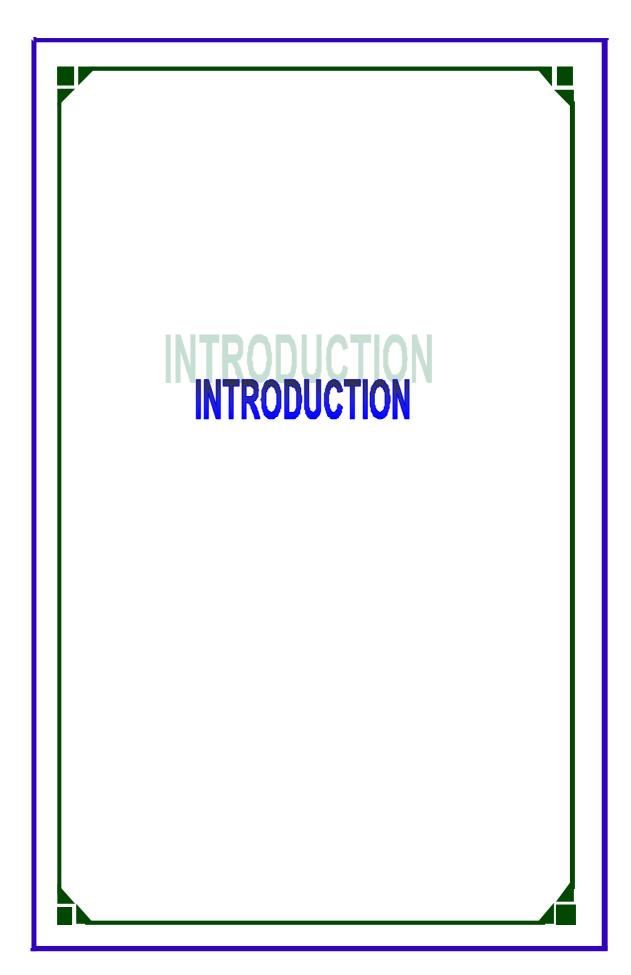

Figure 1: Bar Chart Showing the Number of Implants inserted in the Maxilla and Mandible of Both Sexes	41
Figure 2: Diagram Showing the Vertical Line of Masticatory Load and the Line of Implant Insertion	45
Figure 3-a: Photoradiograph Showing Periapical View with a Radiographic Marker Ball	45
Figure 3-b: Photoradiograph Showing Panoramic View with a Radiographic Marker Ball	45
Figure 4: Diagram Showing ITI TE Dental Implant	47
Figure 5: Diagram Showing Diameters and Lengths Dyna Dental Implants	47
Figure 6: Diagram Showing Vertical Cut Section through Pitt-Easy Implant Body and Prosthetic Abutment	49
Figure 7: Diagram Showing Pitt-Easy Dental Implant	49
Figure 8: Diagram Showing Diameters and Lengths of Pitt Easy Dental Implants	50
Figure 9: Photograph Showing Rinn XCP Kit Evolution 2000	52
Figure 10: Photograph Showing Nix Grid Mount	52
Figure 11: Photograph Showing Vivacare TPS Probes	53
Figure 12: Photograph Showing Implant-Prophy+	53
Figure 13: Photograph Showing Radiographic Marking Balls	54
Figure 14: Photograph Showing Surgical Skin Marker	54
Figure 15: Photograph Showing the Exposed Implant Site	57
Figure 16: Photograph Showing Drilling with the Pilot Drill	57
Figure 17: Photograph Showing Depth Gauge Inserted into the Implant Bed	58
Figure 18: Photograph Showing the Prepared Implant Bed	58
Figure 19: Photograph Showing Bone Tap Inserted into the Implant Bed	59
Figure 20: Photograph Showing Manual Tapping	59
Figure 21: Photograph Showing ITI Implant Attached to the Ratchet Adapter	61
Figure 22: Photograph Showing Implant Insertion Using the Ratchet Adapter	61
Figure 23: Photograph Showing Securing the Implant in its Final Position	62
Figure 24: Photograph Showing Removal of the Transfer Part Using the Ratchet Adapter	62
Figure 25: Photograph Showing ITI Implant in its Final Position	63
Figure 26: Photograph Showing Screwing the Closure Screw	63
Figure 27: Photograph Showing the Repositioned Flap, with Suturing	64
Figure 28: Photograph Showing ITI Implant after Removal of the Closure Screw	64
Figure 29: Photograph Showing ITI Implant with the Healing Cap	65
Figure 30: Photograph Showing the Crestal Incision	67
Figure 31: Photograph Showing Dyna Implant, out of its Package	67
Figure 32: Photograph Showing the Uncovered Dyna Implant	69
Figure 33: Photograph Showing the Dyna Healing Screw after Suturing	69

Figure 34: Photograph Showing the ITI Prosthetic Abutment	73
Figure 35: Photograph Showing the ITI Impression Cap	73
Figure 36-a: Photograph Showing Impression Taking	74
Figure 36-b: Photograph Showing the Impression with the "captured" Positioning Cylinder	74
Figure 37: Photograph Showing the Cast, with the Laboratory Analogue	75
Figure 38: Photograph Showing the Memory Abutment	77
Figure 39: Photograph Showing the Cooled Memory Abutment	77
Figure 40: Photograph Showing the Adjusted Memory Abutment	78
Figure 41: Photograph Showing the Impression	78
Figure 42: Photograph Showing the Try in of the Metal Cast	79
Figure 43: Photograph Showing the Final Restoration	79
Figure 44-a: Photograph Showing the Labial View of an Implant with Plaque and Gingival Indices I	Rated (1),
according to Löe's Method	83
Figure 44-b: Photograph Showing the Palatal View of an Implant with Plaque and Gingival Indices I	Rated (1),
according to Löe's Method	83
Figure 45: Photograph Showing Measuring the Peri- implant Sulcular Depth	84
Figure 46: Photograph Showing Positive Palatal Bleeding	84
Figure 47: Photograph Showing a "Very Satisfied" Implant Patient	86
Figure 48-a: Photoradiograph Showing a Panoramic View of an Implant Immediately after Insertion	86
Figure 48-b: Photoradiograph Showing a Panoramic View of the Same Implant 12 Months after Loading	87
Figure 49-a: Photoradiograph Showing a Periapical View of an Implant Immediately after Insertion	87
Figure 49-b: Photoradiograph Showing a Periapical View of the Same Implant 12 Months after Loading	88
Figure 50-a: Photoradiograph Showing a Periapical View –with Grid- of an Implant before Loading	90
Figure 50-b: Photoradiograph Showing a Periapical View –with Grid- of the Same Implant 12 Months after	Loading 90
Figure 51: Photograph Showing the Periotest	91
Figure 52: Diagram Showing the Periotest	93
Figure 53: Photograph Showing the Test Sleeve	93
Figure 54: Photograph Showing Recording the Periotest Values, before Loading	95
Figure 55: Photograph Showing Recording the Periotest Value, after Loading	95
Figure 56: Bar Chart Showing the Percentage of ITI Implants with PTVs Lower, Equal or Higher That	n PTVs of
Control Teeth	127
Figure 57: Bar Chart Showing the Percentage of Dyna Implants with PTVs Lower, Equal or Higher Tha	n PTVs of
Control Teeth	131
Figure 58: Bar Chart Showing the Percentage of Pitt-Easy Implants with PTVs Lower, Equal or Higher T	
of Control Teeth	135

LIST OF TABLES

Table 1: ITI Dental Implants Dimensions	26
Table 2: Comparison between Miller's Mobility Index and Periotest Values	32
Table 3: Number of Implants Inserted in the Maxilla and Mandible of Both Sexes	41
Table 4: Miller's Mobility Index	82
Table 5: Löe's Plaque Index	82
Table 6: Löe's Gingival Index	82
Table 7: Plaque Index for ITI Implants	99
Table 8: Plaque Index for Dyna Implants	99
Table 9: Plaque Index for Pitt-Easy Implants	99
Table 10: Gingival Index for ITI Implants	100
Table 11: Gingival Index for Dyna Implants	100
Table 12: Gingival Index for Pitt-Easy Implants	100
Table 13: Peri-Implant Sulcular Depth Measured in Millimeters for ITI Implants	102
Table 14: Peri-Implant Sulcular Depth Measured in Millimeters for Dyna Implants	104
Table 15: Peri-Implant Sulcular Depth Measured in Millimeters for Pitt-Easy Implants	106
Table 16: Bleeding Index for ITI Implants	108
Table 17: Bleeding Index for Dyna Implants	110
Table 18: Bleeding Index for Pitt-Easy Implants	111
Table 19: Patient Satisfaction Response Scale	114
Table 20: Image Scores for Each Implant System	114
Table 21: Periotest Values for ITI Implants and Corresponding Control Teeth	116
Table 22: Periotest Values for Dyna Implants and Corresponding Control Teeth	118
Table 23: Periotest Values for Pitt-Easy Implants and Corresponding Control Teeth	119
Table 24: Comparison between Mean Plaque Indices of Different Implant Systems	121
Table 25: Comparison between Mean Gingival Indices of Different Implant Systems	121
Table 26: Comparison between Mean Peri-implant Sulcular Depths of Different Implant Systems	123
Table 27: Comparison between Bleeding Indices of Different Implant Systems	123
Table 28: Comparison between Mean Image Scores of Different Implant Systems	123
Table 29: Lengths, Diameters and Periotest Values with Their Means for ITI Implants	125
Table 30: Lengths, Diameters and Periotest Values with Their Means for Dyna Implants	129
Table 31: Lengths, Diameters and Periotest Values with Their Means for Pitt-Easy Implants	132
Table 32: Comparison between Mean Periotest Values of Different Implant Systems, According to Location	136

Page

INTRODUCTION

In spite of huge development in the field of Dentistry, still natural tooth loss cannot be avoided; hence the rapidly growing field of Implant Dentistry ^(1, 2).

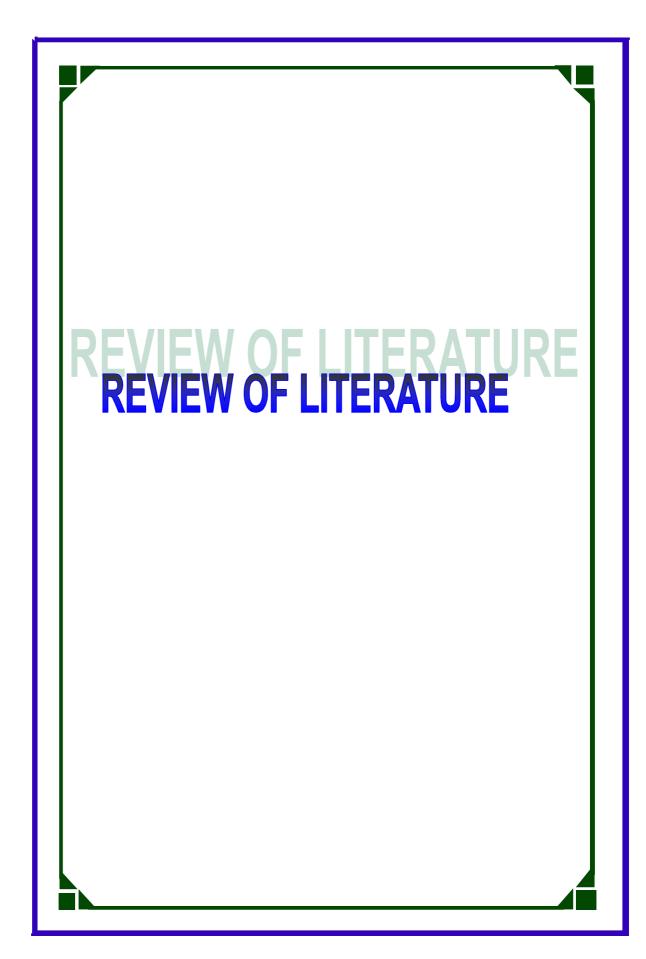
Oral/Dental Implantology is the science and discipline of restoring missing teeth and oral structures to regain function, comfort and esthetics through the use of dental implants ⁽³⁾. An oral or dental implant is a biomaterial surgically inserted into soft or hard tissues of the mouth for functional and/or cosmetic purposes ⁽⁴⁾. It is the "tooth root" analogue and is often referred to as a "fixture" ⁽⁵⁾. Dental implants provide studs to which prosthesis can be fixed ⁽⁶⁾, and usually restricted to patients with completed craniofacial growth ⁽⁷⁾.

Because of ill performance of removable prosthesis, the necessity to reduce virgin tooth/teeth prior to bridgework and the advantages of implant-based prosthesis - including improvement of tissue morphology- the number of inserted implants is rapidly and steadily increasing ⁽⁸⁾. Dental implants are effective in the treatment of complete and partial edentulism with high rate success and long-term stability ^(9, 10). In fact, they are used routinely to support dental and craniofacial restorations ⁽¹¹⁾.

According to Bilhan ⁽¹²⁾ endosseous implant-based prosthesis are successful, effective and predictive devices for replacing missing teeth, even in severely atrophied jaws. In fact, replacement of missing teeth by means of endosseous dental implants has become an important and fundamental part of dentistry ⁽¹³⁾. The goal of modern modalities in dentistry is to have patients with normal contour, function, comfort, aesthetics, speech and health regardless of the atrophy, disease or injury of the stomatognathic system; the replacement of lost natural teeth by osseointegrated implants represents one of the most significant advances in restorative dentistry that serves to achieve this goal ⁽¹⁴⁾.

The use of dental implants in the reconstruction of oral cancer patients is well documented and has significantly improved their rehabilitation. Large defects of the hard or soft tissues in the maxillofacial region are treated more frequently with the aid of dental implants. The advent of improved bone grafting techniques and the use of hyperbaric oxygen therapy for patients who have received radiotherapy have increased the numbers of patients for whom implant placement is possible, providing functional, psychological and aesthetic benefits ⁽¹⁵⁾.

lizuka et al ⁽¹⁶⁾ concluded from a 4-year follow-up study included 28 patients who underwent the ablative tumor surgery and mandibular reconstruction that the application of oral implants seemed to be advantageous for the oral rehabilitation of patients who had undergone intraoral resections.


Kovacs ⁽¹⁷⁾ concluded from a study done on 90 patients received 320 dental implants after oral tumor resection and immediate soft tissue reconstruction that prosthetic restoration of these patients can be achieved with dental implants with similar long-term efficacy as found in healthy subjects adhering to internationally established requirements. The American Dental Association Council on Scientific Affairs developed an updated report on endosseous implants to aid dental professionals in considering and incorporating practical applications of implantation therapy in general practice and recommended that dental practitioners use implantation therapies and systems judiciously in accordance with the current best evidence. The Council also urged evaluators to use common and consistent criteria for reporting the outcomes assessment in clinical studies of various implant treatments ⁽¹⁸⁾.

Thousands of implants -of different systems- are installed annually all over the world. More than 220 implant brands produced by about 80 manufacturers are commercially available worldwide ⁽¹⁹⁾.

Various methods for evaluating implant stability have been developed, but most of them are subjective, having lack of accuracy and vary from clinician to another. Reliable standardized method(s) should be developed to evaluate the stability of these implants. It should be atraumatic, sensitive and easy to be used clinically ⁽²⁰⁾.

Recent studies have attempted to develop criteria for the evaluation of implant fixation (stability). Periotest is the most recent, although it was originally used for detecting periodontal condition of natural teeth since its marketing for clinical use early in 1980's ⁽²¹⁾. Periotest is supplied with a micro-computerized rod that hits the natural tooth or the dental implant and gives an audible reading -Periotest Value "PTV" - that appears on a digital screen and ranges from -08 to +50. Higher readings indicate less implant stability. Clinically stable implants have a Periotest value from -08 to +09 ^(22, 23).

In this study, we will evaluate and discuss the Periotest as a method for evaluating implant stability.

