Elevated B-Type Natriuretic Peptide Blood Levels during Hypertensive Crisis A Novel Diagnostic Marker of Acute Coronary and Cerebrovascular Events

Thesis submitted for partial fulfillment of Master Degree in Critical Care Medicine

> **By** *Hend Yahia Zakaria* M.B.B.CH

Supervisors

Prof.Dr. Mohammad Ashraf Shawky

Professor of Critical Care Medicine Critical Care Medicine Department Cairo University

Prof.Dr. Sameh Kamal El-Maraghi

Assistant Professor of Critical Care Medicine Critical Care Medicine Department Beni Suef University

Dr. Ayman Ahmad Heikal

Lecturer of Critical Care Medicine Critical Care Medicine Department Cairo University

Cairo University 2012

<u>ABSTRACT</u>

<u>Background:-</u> It is not so easy to make a quick screening between hypertensive emergency (H.E) and hypertensive urgency (H.U), as it often requires sophisticated, complex and time consuming clinical, instrumental and diagnostic tests.

<u>Aim:-</u> To address the role of B-type natriuretic peptide (BNP) in hypertension and how to use it to differentiate H.E from H.U to alleviate possible complications.

<u>Methods:-</u> A total of 30 patients with rapid severe elevation of blood pressure (B.P) admitted to the inpatient wards and critical care department, Cairo University, were included in a prospective, non-interventional study. On the basis of the clinical findings, patients were subdivided into two groups: **Group I:-** 15 patients with H.E with acute organ involvement and **group II:** 15 patients with H.U without acute organ damage. Another 10 patients with chronic hypertension were taken as **control group**. BNP was measured in the blood at the time of admission based on the principle of competitive enzyme immunoassay.

<u>**Results:-**</u> There was no significant correlation between the patients' age (58.5±12) and BNP level (183.67±216.3) (r = -0.17, P = 0.3). There was no significant difference in BNP level between males (223.35±179.2) and females

 (131.77 ± 255.2) (p = 0.2) and it was significantly higher in H.E patients (324.33) ± 233.16) than H.U patients (43 ± 13.5) and control (8.13 ± 5.8) groups with pvalue of <0.001. There was no significant difference in BNP level between H.E (313.33±179.6) patients with cardiac and neurological involvement (313.67 ± 273.5) (p= 0.8), also, there was no significant difference in BNP level between patients presented with ischemic stroke (248.75±171), hemorrhagic stroke (255 ± 132) and hypertensive encephalopathy (970) (p= 0.3). Moreover, there was no significant correlation between BNP and systolic B.P., diastolic B.P, mean arterial pressure and pulse pressure in both studied patients and control groups (P>0.05 in all). Receiver operator characteristic (ROC) curve was calculated for the use of BNP level as a diagnostic marker. The area under curve (AUC) for BNP as a diagnostic marker was 0.96.

<u>Conclusion</u>:- During hypertensive crisis BNP blood level determination could have a role as a diagnostic tool for the screening of H.E and its evaluation is very useful in patients admitted with acute and rapid elevation of B.P to limit target organ damage.

<u>*Key words:*</u>- B-type natriuretic peptide; hypertensive emergency; hypertensive urgency; hypertensive crisis.

First of all, praise be to **ALLAH** the merciful, the compassionate, the creator and sustainer of the worlds.

I am greatly indebted and grateful to **Prof.Dr.Mohammad Ashraf**, Professor of Critical Care Medicine, Cairo university, for his constant support, valuable suggestions and helpful advice.

I would like to express my deepest appreciation, gratitude and sincere thanks to **Prof. Dr. Sameh El Maraghi**, Assistant Professor of Critical Care Medicine, Beni Suef university, because of his guidance, support and dedication of so much of his precious time and effort to complete this work.

Special thanks to **Dr. Ayman Heikal**, Lecturer of Critical Care Medicine, Cairo University, for his valuable assistance and helpful advice.

Finally, to my family and specially to my mother as she is always encouraging me and pushing me forward all the time.

Hend Yahia Zakaria

Contents

Subject	Page
> Introduction	1
➤ Aim of the study	4
Natriuretic peptides	5
➢ Hypertension	34
➢ B-type natriuretic peptide & hypertension	75
Patients & Methods	81
➢ Results	89
Discussion	104
Summary	. 114
Conclusion	. 119
Limitations of the study	. 120
> References	121
Master table	153
Arabic summary	

Líst of Tables

Table №	Title	Page
1	JNC-7 classification of blood pressure for adults	36
2	Causes of hypertension	37
3	Functions of the AT1 and AT2 receptors	40
4	Examples of hypertensive emergencies	53
5	Examples of hypertensive urgencies	53
6	Clinical Manifestation of Hypertensive Emergencies	56
7	Parenteral drugs for treatment of hypertensive emergencies	73
8	Age of enrolled patients	89
9	Gender distribution of enrolled patients	89
10	Statistical distribution of target organ lesion	91
11	Characteristics of enrolled patients	92
12	Correlation between age & BNP level	92
13	correlation between gender & BNP	93
14	BNP level in H.E & H.U	94
15	BNP level in H.E, H.U&control groups	95
16	BNP level in cardiac H.E & neurological H.E	96
17	BNP level within neurological H.E subgroup	97
18	Correlation between SBP & BNP level	98
19	Correlation between DBP & BNP level	99
20	Correlation between MAP & BNP level	100
21	Correlation between P.P & BNP level	101
22	Correlation between Cr.cl. & BNP level	102
23	Clinical characteristics of patients enrolled in the study	153
24	Clinical characteristics of control group	154
25	Routine laboratory investigations of patients enrolled in the study	155
26	Routine laboratory investigations of control group	156
27	Imaging studies of patients enrolled in the study	157
28	Imaging studies of control group	158
29	BNP & Cardiac enzymes of patients enrolled in the study & control group	159

Líst of Fígures

Figure №	Title	Page
1	Natriuretic peptide expression, processing, and structure	8
2	Natriuretic peptides receptors	15
3	Renin–angiotensin system	42
4	The biological actions of BNP	77
5	Gender distribution of enrolled patients	90
6	Statistical distribution of target organ lesion	91
7	Correlation between gender & BNP	93
8	BNP level in H.E & H.U	94
9	BNP level in H.E,H.U &control groups	95
10	BNP level in Cardiac H.E & neurological H.E	96
11	BNP level within neurological subgroup	97
12	Correlation between SBP & BNP level in the whole studied population	98
13	Correlation between DBP & BNP level in the whole studied population	99
14	Correlation between MAP & BNP level in the whole studied population	100
15	Correlation between Pulse pr. &BNP level in the whole studied population	101
16	Correlation between Cr.Cl. & BNP level in the whole studied population	102
17	Diagnostic value of BNP	103
18	Dynamic ECG changes of H.E patients (Pt. N_{2} 10)	161
19	CT brain of H.E patients with neurological involvement(Pt.№ 4&8)	162

Líst of Abbrevíatíons

μl	Microlitre
ACE	Angiotensin Converting Enzyme
ACS	Acute Coronary Syndrome
ACTH	Adrenocorticotropic Hormone
AF	Atrial Fibrillation
Alb.	Albumin
ANG	Angiotensin
ANP	Atrial Natriuretic Peptide
ASCOT	Anglo-Scandinavian Cardiac Outcome Trial
AT	Angiotensin receptor
AUC	Area Under The Curve
AV	Aortic valve
AVP	Arginine Vasopressin
BNP	B-Type Natriuretic Peptide or Brain Natriuretic Peptide
BP	Blood Pressure
CAD	Coronary Artery Disease
cGMP	Cyclic Guanosine Monophosphate
CHF	Congestive Heart Failure
CI	Cardiac Index
CNP	C-Type Natriuretic Peptide
CO	Cardiac Output
Cr.	Creatinine
Cr.cl	Creatinine Clearance
СТ	Computed Tomography
CVD	Cerebro Vascular Disease
D.M	Diabetis Mellitus
DBP	Diastolic Blood Pressure
DNP	Dendroaspis Natriuretic Peptide
E.R	Emergency room
ECG	Electrocardiogram
EDTA	Ethylenediaminetetraacetic Acid
EF	Ejection fraction
EIA	Enzyme Immunoassay
ESRD	End-Stage Renal Disease
ET-1	Endothelin-1
F	Female

FFA	Free Fatty Acid
fmol	Femtomole
GFR	Glomerular Filtration Rate
H.R	Heart rate
Hb	Hemoglobin
HE	Hypertensive Emergency
HEn	Hypertensive Encephalopathy
Hge.	Hemorrhage
HS	Hemorrhagic Stroke
HTN	Hypertension
HU	Hypertensive Urgency
ICH	Intra Cranial Hemorrhage
ICU	Intensive Care Unit
IL	Interleukin
INC	Incorporation
INR	International normalized ratio
IS	Ischemic Stroke
JNC	The Joint National Committee
K+	Potassium
LBBB	Left bundle branch block
Lt.	Left
LV	Left Ventricle
LVEF	Left Ventricular Ejection Fraction
LVESWS	LV End-Systolic Wall Stress
LVH	Left Ventricular Hypertrophy
М	Male
MAP	Mean Arterial Pressure
MI	Myocardial Infarction
min.	Minute
ml	Milliliter
mmHg	Millimeter Mercury
MR	Mitral regurge
MRFIT	The Multiple Risk Factor Intervention Trial
MRI	Magnetic Resonance Imaging
mRNA	Messenger RNA
MVP	Mitral valve prolapse
Na ⁺	Sodium
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NEFAs	Non-Esterified Fatty Acids
NEP	Neural Endopeptidase

NF-B	Nuclear Factor-B
nm	Nanometer
NPR	Natriuretic Peptide Receptor
NPs	Natriuretic Peptides
NSR	Normal sinus rhythm
NT pro-BNP	N-Terminal Pro-BNP
O ₂	Oxygen
PCWP	Pulmonary Capillary Wedge Pressure
pg	Picogram
PP	Pulse Pressure
РТСА	Percutaneous Transluminal Coronary Angioplasty
RAS	Renin Angiotensin Aldosterone System
RBBB	Right bundle branch block
Ren-2	Renin-2
ROC	Receiver Operator Characteristic
Rt.	Right
SA-HRP	Streptavadine-Horseradish Peroxidase
SBP	Systolic Blood Pressure
SD	Standard Deviation
SGOT	serum glutamic oxaloacetic transaminase
SGPT	serum glutamic-pyruvic transaminase
SNS	Sympathetic Nervous System
Temp.	Temperature
TGF-β	Transforming Growth Factor Beta
TLC	Total leukocytic count
TMB	Thermo Scientific Pierce
TNF-α	Tumor Necrosis Factor Alpha
TOD	Target organ damage
TR	Tricuspid regurge
TSH	Thyroid stimulating hormone
U.S	United states
VEGF	Vascular Endothelial Growth Factor
VS	Versus
WMA	Wall motion abnormality
α	Alpha
β	Beta

ypertensive crisis is characterized by a rapid elevation of blood pressure (BP) in patients both with known or unknown arterial hypertension¹. Although there is no blood pressure threshold to differentiate a crisis from a less urgent situation for the diagnosis of hypertensive emergency, most crises are associated with diastolic blood pressures \geq 120 mm Hg. Moreover, the magnitude of BP elevation is probably less important than the rapidity of the increase.²

Hypertensive crisis includes hypertensive emergencies and urgencies. Hypertensive emergency is defined as severe hypertension with acute end-organ damage; the most important complications include ischemic stroke, encephalopathy, hemorrhagic stroke and myocardial ischemia. Hypertensive urgency, on the other hand, describes significantly elevated blood pressure but without evidence of acute end-organ damage.³

It is not so easy to make a quick screening between HE and HU, as it often requires sophisticated, complex and time consuming clinical, instrumental and diagnostic tests. The usual diagnostic process includes brief focused neurological and cardiovascular examinations, ECG, chest x-ray, CT of the brain, urine analysis and creatinine evaluation.⁴

The natriuretic peptide family consists of three members: atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Atrial and brain natriuretic peptides possess similar effects, causing natriuresis, vasodilatation, and suppression of the renin-angiotensin-aldosterone system. C-type natriuretic peptide has been suggested to exert its predominant effect on the vasculature, eliciting vasodilatation and inhibiting the proliferation of vascular smooth muscle cells.⁵

Numerous studies have broadened our current knowledge of the regulation of natriuretic peptide gene expression, biosynthesis, and secretion, as well as structure of specific receptors. This has led to a better understanding of the renal, cardiovascular, and endocrine actions of natriuretic peptides in both normal and pathophysiological states, including hypertensive disease.⁵

B-type natriuretic peptide (BNP), with the inactive fragment N-Terminal pro-hormone brain natriuretic peptide (NT-proBNP), is a peptide synthesized by atrial and ventricular cardiomyocytes, with a potent vasodilator, diuretic and natriuretic action; it decreases sympathetic outflow and inhibits vasopressin release.⁶

.....

Aim of The Study

here are no enough data on the potential diagnostic and prognostic role of BNP detection in distinguishing between HE and HU. In the following study we will try to address the role of BNP in hypertension and how to use it to differentiate HE from HU to alleviate possible complications.

Overview and History

he history of the research on the natriuretic peptides can be traced back to 1956 when early studies using the electron microscope showed that granules similar to those in endocrine glands were found in the cells of the atria.⁷

At that time, vasopressin and the renin–angiotensin–aldosterone system were known as regulators of natriuresis, but it was thought that there was another factor (called the 'third factor') which participates in natriuresis. It was also known from a clinical standpoint that natriuresis occurs following supraventricular attacks which suggested that this 'third factor' was linked to the heart.⁸

A major discovery and advancement in the identification of atrial natriuretic peptide was made by de Bold in 1981 who showed that intravenous injection of atrial myocardial extract causes a rapid and potent natriuretic response in rats.⁹