Expression of substance P and its relation to epithelial thickness in oral lichen planus

Thesis

Submitted to Oral Medicine, Oral Diagnosis and Periodontology Department, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy In Oral Medicine, Oral Diagnosis and Periodontology

By

Sherien Ali Hassan

B.CH.D. & M.Sc. Oral Medicine, Oral Diagnosis and Periodontology Department (Cairo University)

> Faculty of Oral and Dental Medicine Cairo University

> > 2012

Professor Dr. Soheir Mohamed Gaafar

Professor of Oral Medicine, Oral Diagnosis and Periodontology Faculty of Oral and Dental Medicine Cairo University

Professor Dr. Heba Ahmed Farag

Professor of Oral Pathology Vice Dean of Students Affairs of Faculty of Oral and Dental Medicine Faculty of Oral and Dental Medicine Cairo University

Dr. Shaheenaz Gamal El-Din El-Ashery

Lecturer of Oral Medicine, Oral Diagnosis and Periodontology Faculty of Oral and Dental Medicine Cairo University

بسو الله الرحمن الرحيم "قالوا سومانك لا علم لنا إلا ما علمتذا إذك أذبتم العليم الحكيم" سورة البقرة ٣٢

First and foremost, I would like to express my greatest thankfulness to *ALLAH*, who created man and gave him the knowledge to think, believe and worship.

I would like to express my sincere gratitude and appreciation to professor Dr. Soheir Gaafar, professor of Oral Medicine, Oral Diagnosis and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University. I will remain grateful for her valuable guidance, continuous scientific supervision, spiritual encouragement, unforgettable efforts and proper planning that lead to the formation of this work.

Special thanks and appreciation to professor Dr. Heba Ahmed Farag, professor of Oral Pathology and vice dean of students affairs of Faculty of Oral and Dental Medicine, Oral Pathology Department, Faculty of Oral and Dental Medicine, Cairo University; for her continuous scientific supervision and spiritual encouragement. I will remain grateful for her great effort, endless help and guidance without whom this work would not have been possible.

My great thanks to Dr. Shaheenaz Gamal El-Din El-Esheiry, lecturer of Oral Medicine, Oral Diagnosis and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University; for her close supervision, her meticulous observation and for giving me generously of her time. I will remain grateful for her guidance that helped me all through this work.

Most sincere thanks to all members in Oral Medicine, Oral Diagnosis and Periodontology Department, Cairo University; for their continuous encouragement and support.

Dedication

Contents

	Page
 Introduction 	1
• Review of literature	4
• Aim of the study	45
 Subjects and methods 	46
• Results	60
• Discussion	82
• Conclusions	92
 Recommendations 	93
• Summary	94
• References	98
• Arabic summary	

List of figures

No	Heading	Page No
1	Clinical photograph for a patient with OLP - papular type	47
	(reticular and annular patterns) - showing a lacy network of	
	white striae adjacent to it an area of melanin pigmentation	
	on the buccal mucosa with peripheral melanin pigmentation.	
2	Clinical photograph for a patient with OLP - erosive type -	48
	showing shallow irregular ulcers covered by	
	pseudomembrane and surrounded by poorly defined striae	
	on the buccal mucosa.	
3	Clinical photograph for a patient with OLP - atrophic type -	49
	showing shallow irregular zone of erythema surrounded by	
	poorly defined white striae on the buccal mucosa.	
4	Photomicrograph showing measuring of epithelial thickness	58
	(X100).	
5	Photomicrograph showing positive reaction of SP in the	58
	epithelial cell layers masked by blue binary color to evaluate	
	optical density (X400).	
6	Photomicrograph showing positive reaction of SP in the	58
	subepithelial lymphocytic band masked by red binary color	
	to evaluate area percentage density (X400).	
7	Clinical photographs, of a 50 years old male, showing	64
	symmetrically distributed lacy network of white striae	
8	(reticular pattern arrangement) adjacent to it sporadic small	
	areas of melanin pigmentation on the right and left buccal	

	mucosa.	
9	Clinical photographs of a 35 years old female: shows	65
	shallow irregular ulceration covered by pseudomembrane	
	and surrounded by poorly defined striae on the right buccal	
	mucosa.	
10	Clinical photographs of a 35 years old female: shows	65
	shallow irregular zone of erythema surrounded by poorly	
	defined striae on the left buccal mucosa.	
11	Clinical photographs of a 45 years old female: shows	66
	shallow irregular zone of erythema accompanied by plaque-	
	like lesions and surrounded by poorly defined striae on the	
	right buccal mucosa.	
12	Clinical photographs of a 45 years old female: shows	66
	shallow irregular ulceration covered by pseudomembrane	
	and surrounded by poorly defined striae on the left buccal	
	mucosa.	
13	Photomicrograph of normal buccal mucosa section from	68
	group I showing the normal stratification of the stratified	
	squamous epithelium and normal underlying connective	
	tissue (H&E, X100).	
14	Photomicrograph of histologic section of papular OLP	69
	showing hyperkeratosis and compact subepithelial band-like	
	lymphocytic infiltrate (H&E, X100).	
15	Photomicrograph of histologic section of atrophic OLP	69
	showing atrophic epithelium and subepithelial band-like	
	lymphocytic infiltrate (H&E, X100).	

16	Photomicrograph of histologic section of erosive OLP	69
	showing epithelial ulcer (blue arrow), subepithelial	
	detachment (yellow arrow) and subepithelial band-like	
	lymphocytic infiltrate (H&E, X100).	
17	Photomicrograph of histologic section of erosive OLP	70
	showing liquefaction degeneration of the basal cell layer	
	(blue arrow) and ill-distinct basal cell layer (green arrow)	
	(H&E, X200).	
18	Photomicrograph of histologic section of erosive OLP	70
	showing epithelial ulcer (blue arrow) (H&E, X200).	
19	Photomicrograph of histologic section of atrophic OLP	70
	showing Civatte bodies (arrows) (H&E, X200).	
20	Photomicrograph of histologic section of papular OLP	71
	showing saw-like rete-pegs (H&E, X100).	
21	Photomicrograph of histologic section of papular (P)/erosive	71
	(E) OLP (H&E, X200).	
22	Photomicrograph of histologic section of OLP showing 71	
	intraepithelial lymphocytic infiltrate (H&E, X200).	
23	Photomicrograph showing very low immunoreaction for SP	74
	in the normal epithelium and the normal underlying	
	connective tissue (DAB, X200).	
24	Photomicrograph showing mild immunostaining for SP in	74
	various epithelial cell layers and mild to negative	
	immunoreactions in the subepithelial lymphocytic infiltrate	
	(DAB, X100).	
25	Photomicrograph showing moderate immunostaining for SP	74

	in various epithelial cell layers and intense immunoreactions	
	in the subepithelial lymphocytic infiltrate (DAB, X100).	
26	Photomicrograph showing moderate immunostaining for SP	74
	in the epithelium and the subepithelial lymphocytic infiltrate	
	(DAB, X100).	
27	Photomicrograph of histologic section from OLP showing	75
	mild immunostaining for SP in various epithelial cell layers	
	of the thick region of the epithelium and more intense	
	immunostaining in the thin regions with moderate	
	immunoreactions in the dense subepithelial lymphocytic	
	infiltrate (DAB, X100).	
28	Photomicrograph of histologic section from OLP showing	75
	highly intense immunostaining for SP in various epithelial	
	cell layers especially in the regions near the epithelial	
	detachment with moderate to intense immunoreactions in	
	the subepithelial lymphocytic infiltrate (DAB, X100).	
29	Histogram showing mean optical density of SP in the	76
	epithelium in the control group and the three variants in	
	group II.	
30	Histogram showing mean area percentage of SP in the	77
	subeithelial lymphocytic band in the three variants of group	
	II.	
31	Histogram showing mean epithelial thickness in the control	79
	group and the three variants in group II.	

List of tables

No	Heading	Page No
1	Genes encoding synthesis of mammalian tachykinins.	29
2	Pro-inflammatory effects of SP in immune cells.	38
3	Descriptive data of the studied groups.	63
4	Comparison between mean optical density of SP in the	76
	epithelium in the control group and the three variants in group	
	II.	
5	Comparison between mean area percentage of SP in the	77
	subeithelial lymphocytic band in the three variants of group II.	
6	Comparison between mean epithelial thickness in the control	79
	group and the three variants in group II.	
7	Correlation between mean optical density and mean epithelial	81
	thickness in the control group and the three variants of group II.	
8	Correlation between mean optical density and mean area	81
	percentage in the three variants of group II.	

Abbreviations

(Τ
■ Ag	 Antigen.
 ANOVA 	 Analysis of variance
 CMV 	 Cytomegalovirus.
 CNS 	 Central nervous system.
 C-terminal 	 Carboxyl-terminal.
 DAB 	 3-3' diaminobenzidine.
■ DG	 Desquamative gingivitis.
■ EBV	 Epstein-Barr virus.
 EGFR 	 Epidermal growth factor receptor.
• ERK 1/2	 Extracellular signal-regulated kinases 1 and 2.
 GPCR 	 Guanine protein-coupled receptors.
 GVHD 	 Graft versus host disease.
■ H&E	 Hematoxyline & Eosin.
 HCV 	 Hepatitis C virus.
 HLA 	 Human leukocyte antigen.
 HPV 	 Human papillomaviruse.
 HRP 	 Horseraddish peroxidase.
■ HSV-1	 Herpes simplex virus-1.
 IFN-γ 	 Interferon-γ.
■ IL	 Interleukin.
■ LP	 Lichen planus.
 MAPK 	 Mitogen-activated protein kinase.
 MHC 	 Major histocompitability.

 MMP 	 Matrix metalloproteinase.
 NF-κβ 	 Nuclear factor-κβ.
■ NK-1R	 Neurokinin-1 receptor.
■ NK-2R	 Neurokinin-2 receptor.
■ NK-3R	 Neurokinin-3 receptor.
 NKA 	 Neurokinin A.
 NKB 	 Neurokinin B.
 NPK 	 Neuropeptide K.
 NPγ 	 Neuropeptide γ.
 OLCLs 	 Oral lichenoid contact lesions.
 OLDRs 	 Oral lichenoid drug reactions.
 OLL-GVHD 	 Oral lichenoid lesions of graft-versus-host disease.
 OLP 	 Oral lichen planus.
• OLR	 Oral lichenoid reactions.
PNS	 Peripheral nervous system.
 PPT gene 	 Preprotachykinin gene.
 RANTES 	 Regulated on Activation, Normal T-cell Expressed and
	Secreted
RCA	 Request for cytotoxic activity.
■ SP	 Substance P.
 TNF-α 	 Tumor necrosis factor-α.

Introduction

Oral lichen planus (OLP), a chronic mucocutaneous inflammatory disease, usually have recognizable, distinctive clinical features and a characteristic distribution. It may be manifested in one of three clinical forms: reticular, erythematous (atrophic) and erosive (ulcerated, bullous) (*Eisen et al., 2005 and Kim et al., 2006*).

The histology of OLP is characterized by a dense band-like subepithelial lymphocytic infiltrate, increased numbers of intra-epithelial lymphocytes and degeneration of basal keratinocytes forming colloid (Civatte) bodies. The ultrastructure of colloid bodies suggests that they are apoptotic keratinocytes. Moreover, epithelial basement membrane changes and disruption of basal keratinocyte anchoring elements produce weaknesses at the epithelial-connective tissue interface which may result in histological cleft formation (*Sugarman et al., 2002 and Brant et al., 2008*).

Kawamura et al. (2003) stated that cell-mediated immune process is involved in the pathogenesis of the disease. The basal layer disruption may result from the cytotoxic effects of the CD8+ T lymphocytes by releasing cytokines [interleukin (IL)-1 β , tumor necrosis factor (TNF)- α and interferon (IFN)- γ], which are mediators to its recruitment as well as to the death of basal keratinocytes (*Brant et al., 2008*). In addition, *Marshman (1998)* stated that cytokines and inflammatory mediators induce changes in keratin profile and those changes in specific keratin genes reflect hyperproliferation.

Chaudhary (2008) suggested that psychological stressors play an important role in the pathogenesis of OLP and form a starting point for the initiation of various immune reactions. Moreover, *Niissalo et al. (2000)* demonstrated the role

of stress in exacerbating OLP suggesting involvement of the neural-immune interaction in its pathogenesis.

In general, the neuro-immune axis is a bidirectional pathway of intersystem communication. This inter-system cross-talk is mediated via a common biochemical language of shared ligands such as cytokines and neuropeptides *(O'connor et al., 2004)*.

Substance P (SP) is the most important member of the tachykinins, a family of neuropeptides. It was considered to be a neurotransmitter for primary sensory afferent fibers and plays an important role in the central nervous system (CNS) pathways (*Esteban et al., 2006*).

SP is secreted by nerves and inflammatory cells such as lymphocytes and dendritic cells and acts by binding to its receptor neurokinin-1receptor (NK-1R) *(O'connor et al., 2004)*. SP has a wide range of functions, including regulation of neurogenic inflammation and immune response as well as participation in psychological stress pathways *(Gonzalez-Moles et al., 2009a)*.

Rosenkranz (2007) documented that SP contribute to both the pathophysiology of inflammatory disease and the pathophysiology of depression and anxiety. Moreover, he suggested that SP dysregulation may be a point of convergence underlying the overlap of chronic inflammatory disease and mood and anxiety disorders.

SP enhances lymphocyte proliferation and differentiation, immunoglobulin production, and enhances cytokine secretion. SP-induced release of inflammatory mediators such as cytokines potentiates tissue injury and stimulates further