Studies on the potential behavioral and neurochemical effects of epigallocatechin gallate (EGCG) in an experimental model of depression.

A thesis submitted in partial fulfillment for the requirements of the master degree in pharmaceutical sciences (Pharmacology and Toxicology).

By El-shaimaa Ibrahim magdy

Bachelor of Pharmaceutical sciences, Ain Shams University (2006)

<u>Under the Supervision of:</u> Dr. Azza Abd El-Fattah Ali

Professor and Head of Pharmacology and Toxicology Department

Faculty of Pharmacy, Al-Azhar University

Dr. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Department

Faculty of Pharmacy_Ain Shams University

Dr. Hebatalla Ibrahim Ahmed

Lecturer of Pharmacology and Toxicology Department Faculty of Pharmacy, Al-Azhar University

> Ain Shams University 2014

ACKNOWLEDGMENT

At the beginning and first of all, Ahmadullah whose blessings I will never be able to thank for.

It is a great pleasure to express my deepest thanks and appreciation to Dr. Azza Abd El-Fattah Ali, Professor and Head of Pharmacology and Toxicology department, Faculty of Pharmacy (Girls), Al-Azhar University, for her advice, supervision, and crucial contribution, which made her a backbone of this research. She embraced this thesis by establishing the work techniques, supervising the work steps, giving me her valuable knowledgeable comments and providing me with the possible facilitations.

I owe all the sincerest appreciation and gratitude to Dr. Ebtehal El-Demerdash Zaki, Prof. and Head of Pharmacology and Toxicology department, Faculty of Pharmacy, Ain Shams University, whose sincerity and encouragement I will never forget. All credit goes to her for choosing the thesis point, reviewing documentation and writing stages. I wish to thank her not only for her effort but also for her excessive generosity and kindness. I learned from her determination and enthusiasm a lot that will benefit my career in an unforgettable way.

I am extremely indebted to Dr. Hebatallah Ibrahim, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, for supervising the work steps, her advice, guidance, generous help, continuous encouragement, enthusiastic support, using her precious times to read this thesis and give her critical comments about it. I am also grateful for solving the daily problems during the experiments. The supervision and support that she gave truly help the progression and smoothness of this work.

L

I must as I strode my first steps in the academic life to stop and go back to the years I spent in the university with our valued professors who have given us a lot, making these great efforts in building tomorrow's generation. Before I proceed, I must offer my deepest thanks, gratitude, appreciation and love to those who carried the holiest message in life......To those who paved to us the way to science and knowledge......To all our esteemed professors.

I would like to thank my colleagues in The Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University for their kind co-operation and moral support.

Lastly I would like to give everlasting thanks to my family members, especially my father and mother, my beloved husband Mohamed and my dear child hamza for supporting and encouraging me to pursue this study. Without their encouragement, I would not have finished this study.

ELshaimaa Ibrahim

<u>Preface</u>

Contents	page
List of abbreviations	VI
List of Tables	VIII
List of Figure	IX
Abstract	1
<u>Introduction</u>	2
Depression	2
Classification and symptoms of depression	2
Pathophysiology of depression	5
1-The catecholamine theory of depression	5
2 -Dysregulation Hypothesis	7
-Two new neuroinflammatory theories of depression	7
Management of depression	9
1- Non pharmacological Approach.	9
2- Pharmacological Approach.	10
Animal models of depression	14
I- Models of Predisposition to Depression (Diathesis)	14
II- Models of Depression as a Response to Adversity (Stress)	16
III-Social Dominance Models (Social Separation)	17
IV-Pharmacological Models	18
Aggression	21
Neurochemical mechanism of aggression	21
Neuroanatomical mechanism of aggression	23

Preface

Animals Models of Aggression	23
I Models of offensive aggressive behaviors	24
II Models of defensive behaviors	25
III Miscellaneous models	27
Green tea	28
Epigallocatechin-3-gallate	30
- Pharmacokinetics	30
- Pharmacodynamics	33
Imipramine	35
Aim of the work	39
Materials and methods	41
I Design of the work	41
II Materials	44
1. Laboratory animals	44
2.Drugs	44
3.Chemicals and solvents	45
III Methods	46
1. Behavioral assessment	46
A. Open-field test (OFT)	46
B. Forced swimming test (FST)	49
C. Foot shock-induced aggression test (FIA)	52
2. Monoamine neurotransmitters analysis	54
3. Histopathological examination	59
4. Immunohistochemical assessment	60

Preface

IV Statistical analysis	62
Results	63
I. Behavioral examination	63
1-Effect of EGCG in open field test	63
2-Effect of EGCG in forced swimming test	72
3-Effect of EGCG in footshock-induced aggression test	80
II. Evaluation of brain neurotransmitters using HPLC	88
III. Histopathological examination of the brain	97
IV. Immunohistochemical examination of Cox-2 in the brain	104
Discussion	112
Summary and conclusion	126
References	131

List of abbreviations

5-Hydroxytryptamine (Serotonin)	5-HT
Acetylcholine	Ach
Catechol-O-methyl transferase	COMT
Cerebral cortex	CC
Chronic mild stress	CMS
Clonidine	CLO
Cyclooxygenase	COX
Dopamine	DA
Electroconvulsive therapy	ECT
Epicatechin	EC
Epigalocatechin	EGC
Epigalocatechingallate	EGCG
Flinders sensitive-line	FSL
Focal gliosis	g
Footshock-induced aggression	FIA
Forced swimming test	FST
γ- aminobutyric acid	GABA
Green tea extract	GTE
Green tea polyphenols	GTP
Hippocampus	hp
Hypothalamic-pituitary-adrenal axis	HPA
Imipramine	IMI
Intraperitoneal	IP
Meninges	m

<u>Preface</u>

Medulla oblongata	mo
Monoamine oxidase	MAO
Monoamine oxidases inhibitors	MAOIs
Major depression	MD
Major depressive disorder	MDD
Noradrenaline	NA
Norepinephrine-dopamine reuptake inhibitor	NDRI
Norepinephrin	NE
Open-field test	OFT
Pro-inflammatory	PI
Selective serotonin reuptake inhibitors	SSRIs
Serotonin-norepinephrine reuptake inhibitors	SNRIs
Squares	Sq.
Standard error of mean	S.E.M
Tricyclic antidepressants	TCAs

List of Tables

Table	Title	Page
no.		Tuye
1	Effect of EGCG on the behavioral changes induced by clonidine in the open field test.	67
2	Effect of EGCG on the behavioral changes induced by clonidine in the forced swimming test.	76
3	Effect of EGCG on the behavioral changes induced by clonidine in the foot shock induced aggression test.	84
4	Influence of EGCG on brain monoamines contents.	93
5	Effect of EGCG on brain Cox-2in depression model using male albino rats.	105

List of Figures

Fig. no.	Title	Page
i.	Open Field Test Apparatus.	47
ii.	Forced Swimming Test Apparatus.	50
iii.	Footshock-Induced Aggression Test Apparatus	53
iv.	Standard curve of dopamine.	56
v.	Standard curve of norepinephrine.	57
vi.	Standard curve of serotonin.	58
1.	Effect of EGCG on clonidine-induced changes in latency time in the open field test.	68
2.	Effect of EGCG on clonidine-induced changes in ambulation frequency in the open field test	69
3.	Effect of EGCG on clonidine-induced changes in rearing frequency in the open field test.	70
4.	Effect of EGCG on clonidine-induced changes on defecation in the open field test.	71
5.	Effect of EGCG on clonidine-induced changes in immobility score in the forced swimming test.	77
6.	Effect of EGCG on clonidine-induced changes in swimming score in the forced swimming test.	78

1		
7.	Effect of EGCG on clonidine-induced changes in climbing score in the forced swimming test.	79
8.	Effect of EGCG on clonidine-induced changes in latency to fight in the foot shock induced aggression test.	85
9.	Effect of EGCG on clonidine-induced changes in jumping frequency in the foot shock induced aggression test.	86
10.	Effect of EGCG on clonidine-induced changes in rearing frequency in the foot shock induced aggression test.	87
11.	Effect of EGCG on dopamine content in depressed rats.	94
12.	Effect of EGCG on serotonin content in depressed rats.	95
13.	Effect of EGCG on norepinephrine content in depressed rats.	96
14.	Showing normal histological structure of the meninges (m) and Cerebral cortex (cc) in control group.	99
15.	Showing normal histological structure of the striatum in cereblum (S) in control group.	99
16.	Showing normal histological structure of hippocampus (hp) in control group.	99
17.	Showing normal histological structure of cerebellum (cr) in control group.	99

18.	Showing normal histological structure of Medulla oblongata (mo) in control group.	100
19.	Showing focal gliosis (g) in stratum of cerebrum in clonidine treated group.	100
20.	Showing neuronal degeneration in cells of the hippocampus (arrow) in clonidine treated group.	100
21.	Showing focal haemorrhage in and adjacent the hippocampus (hp) in clonidine treated group.	100
22.	Showing focal gliosis (g) and neuronal degeneration (arrow) in cerebral cortex in imipramine treated group.	101
23.	Showing focal haemorrhage (h) in hippocampus (hp) in imipramine treated group.	101
24.	Showing haemorrhage (h) in area surrounding the cerebellum (cr) in imipramine treated group.	101
25.	Showing focal gliosis (g) in cerebral cortex in 25mg/kg EGCG treated depressed group.	101
26.	Showing focal gliosis (g) in striatum of cerebrum in 25mg/kg EGCG treated depressed group.	102
27.	Showing haemorrhage (h) in meninges(m) covering medulla oblongata (mo) in 25mg/kg EGCG treated depressed group.	102
28.	Showing focal gliosis (g) in cerebral cortex in 50mg/kg EGCG treated depressed group.	102

Showing normal histological Structure of cerebral cortex (cc) And Striatum(S) in 25mg/kg EGCG treated group.	102
Showing normal histological Structure of hippocampus (hp)) in 25mg/kg EGCG treated group.	103
Showing normal histological Structure of cerebral cortex (cc) and Striatum(S) in 50mg/kg EGCG treated group.	103
Showing normal histological Structure of hippocampus (hp) in 50mg/kg EGCG treated group.	103
Cox-2 in prefrontal cortex.	106
Negative reaction was noticed in the neurons of the cerebral cortex of control group.	107
Showing positive immunohistopathological reaction in neurons of cerebral cortex of clonidine treated group.	107
Showing positive l reaction in neurons of cerebral cortex of imipramine treated group.	107
Showing positive l reaction in neurons of cerebral cortex of depressed group treated by EGCG (25mg/kg).	107
	 Striatum(S) in 25mg/kg EGCG treated group. Showing normal histological Structure of hippocampus (hp)) in 25mg/kg EGCG treated group. Showing normal histological Structure of cerebral cortex (cc) and Striatum(S) in 50mg/kg EGCG treated group. Showing normal histological Structure of hippocampus (hp) in 50mg/kg EGCG treated group. Cox-2 in prefrontal cortex. Negative reaction was noticed in the neurons of the cerebral cortex of control group. Showing positive immunohistopathological reaction in neurons of cerebral cortex of clonidine treated group. Showing positive I reaction in neurons of cerebral cortex of depressed

38.	Showing negative reaction in neurons of cerebral cortex of depressed group treated by EGCG (50mg/kg).	108
39.	Showing positive l reaction in some few neurons of cerebral cortex of group treated by EGCG (25mg/kg).	108
40.	Showing negative reaction in neurons of cerebral cortex of group treated by EGCG (50mg/kg).	108
41.	Cox-2 in hippocampus.	91
42.	Negative reaction was noticed in the neurons of the hippocampus of control group.	109
43.	Showing positive reaction in neurons of the hippocampus of clonidine treated group.	110
44.	Showing positive reaction in neurons of hippocampus of imipramine treated group	110
45.	Showing positive reaction in neurons of hippocampus of depressed group treated by EGCG(25mg/kg).	110
46.	Showing positive reaction in some neurons of hippocampus of depressed group treated by EGCG (50mg/kg)	111
47.	Showing positive reaction in some few neuronal cells of hippocampus of group treated by EGCG 25mg/kg).	111
48.	Showing negative reaction in neurons of hippocampus of group treated by EGCG (50mg/kg).	111

<u>Abstract</u>

Epigallocatechin-gallate (EGCG) is the most abundant and active green tea polyphenols responsible for most of green tea's role in promoting good health. This study was conducted to explore the anti-depressive and the neurochemical effect of EGCG in male albino rats. Adult male rats were randomly assigned to seven groups as follows: normal control group (saline i.p. for 21 days), depressed control group treated with clonidine (0.8mg/kg i.p.) for seven consecutive days started after 14 days of saline treatment and three depressed groups treated with Imipramine (15mg/kg, i.p.), EGCG (25 or 50mg/kg, i.p.) daily for two consecutive weeks starting after clonidine treatment and finaly two groups treated with EGCG (25 or 50mg/kg, i.p.) daily for two consecutive weeks started after 7days of saline treatment. Results showed that behavioral performances of depressed control group were changed abnormally, and they were improved in EGCG treated groups. In the open-field test (OFT), the EGCG (50 mg/kg) treated rats increased the ambulation frequency, the rearing frequency, the latency time and the defecation. By forcedswimming test (FST), the study successfully established the model of depression, compared with the depressed control group, EGCG treated rats normalized all parameters. The difference between the EGCG treated group and the control group has no significance. EGCG treatment to depressed rats in a dose of 50mg/kg showed significant increase on latency to fight and significant decrease in jumping frequency but did not show any significant effect on rearing frequencies in the foot shock induced aggression (FIA) when compared to depressed control rats. In addition brain levels of serotonin, dopamine and norepinephrine where increased in EGCG treated groups. In histopathological examination, EGCG (50mg/kg) was superior to imipramine and EGCG (25mg/kg), and decreased COX-2 expression which may explain its antidepressant efficacy. So it was found that EGCG may have an antidepressive effect and that this effect is dose-related, that is, high dose of EGCG (50mg/kg) has a stronger effect.

1