شبكة المعلومات الجامعية
التوثيق الإلكتروني والميكروفيلم
جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها
على هذه الأفلام قد أُعدت دون أيّة تغيّرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار
في درجة حرارة من 15-25 مئوية ورطوبة نسبية من 20-40%

To be Kept away from Dust in Dry Cool place of
15-25- c and relative humidity 20-40%
بعض الوثائق الأصلية تالفة
بالرسالة صفحات
لم ترد بالاصل
Studying The Treatment Processes of Water and Wastewater at Talkha Power Plant

THESIS

Submitted to the High Institute of Public Health, Alexandria University
In partial fulfillment of the requirements for the Degree of Master of Public Health Sciences (Environmental chemistry & Biology)

BY

Sahar Ahmed Taha Mohammed Abo El-Naser
B.Sc. chemistry, Faculty of Science, Mansoura University, 1986
Diploma in Environmental Science, Faculty of Science, Mansoura University, 1994
D.P.H., (Environmental Chemistry and Biology), High Institute of Public Health, Alexandria University, 1997

High Institute of Public Health
Alexandria University

2002
Dr. Olfat Dessouky El-Sebaie
Prof. of Environmental Chemistry and Biology
Dept. of Environmental Health
High Institute of Public Health
Alexandria University

Dr. Ghazy EL-Sayed Abd-El-Karim
Associate Professor of Environmental Engineering
Dept. of Environmental Health
High Institute of Public Health
Alexandria University

Dr. Mohammed Hassan Ramadan
Associate Professor of Environmental Chemistry and Biology
Dept. of Environmental Health
High Institute of Public Health
Alexandria University

Dr. Magda Mohamed Abd El-Atey
Lecturer of Environmental Chemistry and Biology
Dept. of Environmental Health
High Institute of Public Health
Alexandria University
Dedication

This work is lovingly dedicated to my mother, my brother for their support and help to complete this study and to the soul of my father. Special dedication to my brother’s children: Allaa and Rahma.
Acknowledgment

Thanks to ALLAH for the help and strength offered to me during this work.

I wish to express my deepest gratitude and appreciation to my supervisors for their guidance and encouragement.

I am particularly grateful to Professor Dr. Olfat El-Sebaie, Prof. of Environmental Chemistry and Biology, Dept. of Environmental Health, High Institute of Public Health, for suggesting the Research topic of this thesis and her fruitful discussions, support and guidance during this work.

I wish to thank Dr. Ghazy Abd-El-Karim Associate Professor of Environmental Engineering, Dept. of Environmental Health, High Institute of Public Health, for his helpful comments, valuable criticism and his assistance.

I would like to express my great thanks and deep appreciation to Dr. Mohammed Hassan, Associate Professor of Environmental Chemistry and Biology, Dept. of Environmental Health, High Institute of Public Health for his unlimited help & continuous encouragement, support and guidance throughout this work.

I feel so grateful to Dr. Magda Abd El-Atey, Lecturer of Environmental Chemistry and Biology, Dept. of Environmental Health, High Institute of Public Health, for her help during execution of the study.

A Sincere gratitude is presented to Eng. Mohammed Hassan, chairman of board of Tlkha generation power plant for his great support.

I am also indebted to all staff of Talkha power plant for their valuable assistance.
Contents

Acknowledgment	1
Dedications	3
List of tables	3
List of figures	3
I. Introduction	1
II. Literature review	3
2.1. Water	5
2.1.1 Drinking water	5
2.1.1.1 Sources and provisions of drinking water	5
2.1.1.2 Selection of the sources	5
2.1.3 Water purification process	5
2.1.3.1 Storage	6
2.1.3.2 Pre-sedimentation	6
2.1.3.3 Coagulation and flocculation	6
2.1.3.3.1 Coagulation	7
2.1.3.3.1.1 Factors affecting coagulation	7
2.1.3.3.1.2 Coagulation mechanism by alum	8
2.1.3.3.2 Flocculation	8
2.1.3.3.2.1 Flocculation process	8
2.1.3.4 Sedimentation	9
2.1.3.5 Filtration	9
2.1.3.5.1 Filter media	10
2.1.3.5.2 Factors effecting filters selection	10
2.1.3.5.3 Types of filters	10
2.1.3.5.3.1 Slow sand filter	10
2.1.3.5.3.1.1 Disadvantages of slow sand filter	12
2.1.3.5.3.2 Rapid sand filters	12
2.1.3.5.4 Filter clogging	12
2.1.3.5.5 Head loss	13
2.1.3.5.6 Backwashing	13
2.1.3.5.7. Filter ripening 13
2.1.3.6. Disinfection 14
 2.1.3.6.2. Factors influence disinfection levels 16
 2.1.3.6.3. Methods of disinfection 16
 2.1.3.6.3.1. Physical methods 16
 2.1.3.6.3.2. Chemical methods 18
 2.1.3.6.3.2.1. Chlorination 18
 2.1.3.6.3.2.2. Chloramines 21
 2.1.3.6.3.2.3. Chlorine dioxide 22
 2.1.3.6.3.2.4. Ozonation 23
 2.1.3.6.7. Distribution systems 24
2.2. Demineralized water 26
 2.2.1. Ion-exchange 26
 2.2.2. Membrane processes 27
 2.2.2.1. Types of membrane processes 28
 2.2.2.1.1. Reverse Osmosis (RO) 28
 2.2.2.1.2. Electro Dialysis (ED) 29
 2.2.2.1.3. Electro Dialysis Reversal (EDR) 29
 2.2.2.1.4. Ultra filtration (UF) 30
 2.2.2.1.5. Nano filtration (NF) 30
2.3. Wastewater 31
 2.3.1. Origin of wastewater 31
 2.3.2. Nature of domestic wastewater 32
 2.3.3. Characteristics of wastewater 32
 2.3.3.1. Physical characteristics 33
 2.3.3.2. chemical characteristics 33
 2.3.3.3. Biological characteristics 33
 2.3.4. Objectives of wastewater treatment 33
 2.3.5. Domestic wastewater treatment processes 35
 2.3.5.1. Primary Treatment 35
 2.3.5.1.1. The pretreatment process 35
 2.3.5.1.1.1. Unit operations of pretreatment 37
 2.3.5.1.1.1.1. Screening 37
2.3.5.1.1.2. Grit chambers 38
2.3.5.1.1.3. Floatation 39
2.3.5.1.1.4. Equalization 40
2.3.5.1.2. Sedimentation 40
2.3.5.1.3. Comminutors 40
2.3.5.2. Secondary treatment 40
2.3.5.2.1. Activated Sludge 41
 2.3.5.2.1.1. Operation and control of activated-sludge processes 43
 2.3.5.2.1.2. Advantages of activated sludge 43
 2.3.5.2.1.3. The disadvantages of the activated sludge 45
2.3.5.2.2. Trickling filters 45
 2.3.5.2.2.2. Advantages of the trickling filter 47
 2.3.5.2.2.3. Disadvantages of trickling filters 47
 2.3.5.3. Biological filtration 48
 2.3.5.4. Rotating biological contactor (RBCs) 49
2.3.5.5. Oxidation ponds (stabilization ponds) 50
 2.3.5.5.1. Advantages of stabilization ponds 52
 2.3.5.5.2. Disadvantages of the stabilization pond 52
2.3.5.6. Disinfection 52
2.3.5.7. Advanced wastewater treatment (Tertiary treatment) 53
2.3.5.8. Sludge treatment and disposal 55
 2.3.5.8.1. Concentration (Thickening) 55
 2.3.5.8.2. Digestion 55
 2.3.5.8.3. Conditioning 56
 2.3.5.8.4. Dewatering 56
 2.3.5.8.5. Oxidation 56
 2.3.5.8.6. Ultimate sludge disposal 56
2.3.5.8.7. Reuse applications of the wastewater 57
 2.3.5.7.1. Agricultural irrigation 57
 2.3.5.7.2. Recreational uses 58
2.4. Electrical power generation 58
 2.4.1. Non renewable energy sources 60
2.4. 1.1. Coal 60
2.4.1.2. Natural gas 60
2.4.1.3. Oil 60
2.4.1.4. Fossil fuel 61
2.4.1.5. Nuclear 61
2.4. 1.6. Synthetic fuels 61
2.4. 1.6.1 Coal gasification 61
2.4. 1.6.2. coal liquefaction 62
2.4.2. Renewable energy sources 62
2.4. 2.1. Wind energy 62
2.4.2.2 Solar energy 63
2.4.2.3. Wave energy 63
2.4.2.4. Tidal energy 63
2.4.2.5. Ocean thermal energy 64
2.4.2.6. Hydropower 64
2.4. 2.7. Biomass energy 64
2.4.3. Wastes form sources of power production 65
2.4.3.1. Wastes from fossil fuel combustion 65
2.4.4.1.1. Air emissions 65
2.4.4.1.2. Clean coal technology program (CCT) 65
2.4.3.2. Industrial wastewater 65
2.4.3.2.1. Sources of wastewater 66
2.4.3.2.1.1. Boiler blow down steam cycle contaminants. 66
2.4.3.2.1.2. Thermal pollution 67
2.4.3.2.1.3. Demineralizer regenerant 67
2.4.3.2.1.4. Losses from other Ancillary operations 68
2.4.3.2.1.4.1. Fireside wash wastes 68
2.4.3.2.1.4.2. Boiler chemical cleaning wastes 68

III. Aim of the Work 70

IV. Background information 71
4.1. Power generation 71
4.2. Treatment processes of River Nile raw Water 72
4.2.1. Drinking water purification plant 72
4.2.1.1. Coagulation and clarification 72
4.2.1.2. Filtration 74
4.2.1.3. Chlorination 74
4.2.1.4. Drinking water purification plant data 74
4.2.2. Demineralized water treatment plant 75
 4.2.2.1. Conventional treatment 77
 4.2.2.2. Tertiary treatment 78
4.3. Domestic wastewater treatment plant 82
 4.3.1. Collection sump: 82
 4.3.2. Compact unit 84
 4.3.2.1. Aeration tank 84
 4.3.2.2. Sedimentation tank 84
 4.3.2.3. The digestion tank 85
 4.3.2.4. Compressor units 85
 4.3.3. The equalization tank 86
 4.3.4. The sand filter 86
 4.3.5. Chlorination basins 87
 4.3.6. The drying beds 87
4.4. Industrial wastewater treatment plant (IWWTP) 88
 4.4.1. Collection sump 88
 4.4.2. Lungstrom 90
 4.4.3. Clarifier 90
 4.4.4. Sedimentation sump 91
 4.4.5. Thickener tank 91
 4.4.6. Membrane filter press 92
 4.4.7. Effluent sump 92
V. Material and Methods 94
 5.1. The study setting 94
 5.2. The sampling design 94
 5.2.1. The samples sizes 94
 5.2.2. The sampling sites 94
 5.2.2.1 The sampling sites of drinking water purification plant 94
 5.2.2.2. The sampling sites of water demineralization treatment plant 95
plant
5.2.2.3. The sampling sites of domestic wastewater treatment plant
5.2.2.4. The sampling sites of industrial wastewater treatment plant

5.2.3. Frequency of sampling

5.3. Samples analysis

5.4. The statistical analysis

VI. Results and Discussion
6.1. Water purification plants
 6.1.1. Drinking water purification plant
 6.1.1.1. River Nile Raw water evaluation
 6.1.1.2. Clarified water evaluation
 6.1.1.3. Filtered water characteristics evaluation
 6.1.1.4. Disinfected water evaluation
6.2. Evaluation of water demineralization treatment plant
 6.2.1. Raw water evaluation
 6.2.2. Clarified water evaluation
 6.2.3. Sand filter evaluation
 6.2.4. Evaluation of carbon filter
 6.2.5. Evaluation of cationic exchange unit
 6.2.6. Evaluation of anionic exchange unit
 6.2.7. Evaluation of Mixed bed
 6.2.8. Evaluation of storage water
6.3. Evaluation of domestic wastewater treatment plant
 6.3.1. Evaluation of influent domestic wastewater
 6.3.2. Evaluation of aeration tank
 6.3.3. Evaluation of sedimentation
 6.3.4. Evaluation of equalization tank
 6.3.5. Evaluation of filtration process
 6.3.6. Evaluation of the final effluent
 6.3.7. Evaluation of the treatment plant processes
6.4. Characterization of drinking water purification waste