Stature Lengthening Surgery

Essay Submitted for fulfillment of master degree in Orthopaedic Surgery

Presented by Ahmed Mohamed Mohamed Ali El.Bakr M.B.B.CH.

Supervised by

Prof. Dr. Osama Shata

Professor of Orthopaedic surgery Faculty of Medicine - Ain Shams University

Dr. Khaled Emara

Associate professor of Orthopaedic surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First and foremost thanks to Allah the most merciful.

I would like to express my deepest gratitude to *Prof Dr. Osama Shata,* Professor of orthopedic surgery, Faculty of Medicine, Ain Shams University, for giving me the privilege of supervising this essay and for his constructive encouragement, Illuminating guidance as well as his support throughout this work.

My gratitude and thank to **Dr. Khaled Emara,** associate professor of orthopedic surgery, Faculty of Medicine, Ain Shams University, for the time he spent and the effort he paid In helping me during this work. It was a great honor and a chance of a life time to work with him.

To all who shared in a way or another to make the dream of conducting such a study comes true, thank you.

Contents

	Page
Acknowledgment	
List of Tables	
List of Figures	
Indications and contraindications	1
Diagnosis and planning	12
Methods of stature lengthening	35
Complications	97
Future directions	119
Summary	122
References	123
Arabic summary	-

List of Tables

No.	Table	Page
1	Anthropometric Chart for girls	4
2	Anthropometric Chart for boys	5
3	Deformity and Clinical Manifestation of the achondroplastic dwarfism	15
4	Growth Rates in Children	16
5	Height multiplier for boys and girls	21
6	Physiological values of frontal plane joint orientation of the leg	81
7	Algorithm for classification of feature type	85
8	The advantages and disadvantages of DEXA, ultrasonography and radiograph	92
9	The "Good, Bad and Ugly" pin site grading system	99
10	Checketts and Otterburn classification of pin track infection	100

No.	Figure	Page
1	First Lengthening Between Ages 7 and 10 Years	25
	in achondroplasia	
2	First Lengthening at About 13 Years of Age in	26
	achondroplasia (Option 1) Double-level tibial	
	lengthening	
3	First Lengthening at About 13 Years of Age in	27
	achondroplasia (Option 2) Bilateral	
	simultaneous femoral and tibial lengthening	
4	Second Lengthening at Age 14 Years (bilateral	29
	humeral lengthening)	•
5	Third Lengthening Between Ages 15 and 16	30
	Years (Option 1) Bilateral femoral lengthening	
6	With monolateral rall fixators.	22
0	of Hin Elavion Deformity and Cova Vara	32
7	Humaral Lengthening with Correction of Elbow	3/
/	Flexion Deformity	34
8	Distraction osteogenesis techniques	37
9	Three-zonal structure of distraction regenerate	<u> </u>
10	Different clinical stages of distraction	40
10	osteogenesis	40
11	special drill guide	43
12	Machanical and anotomical away of the formur	15
14	and tibia	43
13	De Bastiani technique for corticotomy	47
1.0	Length an inc. of the forest spin a superstimul	
14	monolateral external fixator	50
15	Taylor Spatial Frame fixator	53
16	lizarow and the Taylor Spatial Frame fixeter	55
10	inzarov and the Taylor Spatial Frame fixator	54
17	Sequence of procedures and distraction for leg	57
	lengthening by an external fixator over an	
	intramedullary nall	

List of Figures

No.	Figure	Page
18	Femoral lengthening over a humeral	58
	intramedullary nail	
19	Lengthening and then Nailing technique	66
20	Course following application of an external	68
	fixator (with or without intramedullary nailing)	
	and definitions of related parameters	
21	Changes of the femur in Plating after	69
	lengthening technique	
22	Function of the Intramedullary Skeletal Kinetic	72
	Distractor device	= -
23	Femoral ,tibial Intramedullary Skeletal Kinetic	72
24	Distractor and monitor	70
24	the tibie	70
25	Frontal plane joint orientation angle and normal	82
23	values relative to the mechanical axis	02
26	Femoral and tibial lengthening by Fitbone	84
	telescope active actuator nail	01
27	The radiographic features of distraction	85
	osteogenesis with regard to shape	
28	The radiographic features of distraction	88
	osteogenesis with regard to type	
29	Homogeneous and heterogeneous pattern of	88
	healing during limb lengthening	
30	Pixel density technique	96
31	Knee and Equinus contracture as a result of	101
	lengthening	
32	Delta configuration in distal femur fixation	102
33	Avoiding equinus contracture of the ankle	104
34	Elastic bandages applied to the toes and	104
	connected to a dorsal rod	

List of Figures (Cont.)

No.	Figure	Page
35	Posterior subluxation of the tibia as a result	107
	of lengthening	
36	Classification of fractures in lengthening by	115
	Simpson and Kenwright	
37	The Multiaxial Correcting External Fixation	118
	System	
38	Orthogon's magnetically actuated tibial	121
	intramedullary telescopic nail	
39	Schematic diagram of limb lengthening by a	121
	magnetic coil	

List of Figures (Cont.)

Introduction

Introduction

Each year, thousands of individuals undergo elective cosmetic surgery to alter their physical presentation. One elects to have cosmetic surgery to improve satisfaction with one's appearance and ultimately, self esteem.⁽¹⁾

But cosmetic leg lengthening or(symmetrical extended limb lengthening) surgery is n't in the same dimension as other cosmetic procedure because it is major surgery with a host of possible complications as well as a lengthy postoperative course.⁽²⁾ As such, surgeons who perform this procedure often recommend that patients undergo an intensive psychological evaluation by specific measure to assess a patient 's internal and external motivation for and expectations of surgery as well as psychological expectations and possible benefits derived from the procedure as most patients with body dysmorphic disorder show little to know psychological improvement and often request further surgical procedures.⁽³⁾

Lengthening for stature in normally proportioned individuals with short stature but without dysplasia requires a different strategy for lengthening than in patients with disproportion and dysplasia. Most patients with constitutional short stature or low normal stature require only modest increase in stature compared to the extreme amount of lengthening required by patients with dwarfism.⁽⁴⁾

The skeletal dysplasias are a heterogeneous group of disorders characterized by intrinsic abnormalities in the growth and/or remodeling of cartilage and bone. They frequently cause a disproportionately short stature (dwarfism); Achondroplasia is the most common type of short-limb disproportionate dwarfism. In achondroplasia, the extremity involvement is rhizomelic, with the arms and thighs more severely involved than the forearms, legs, hands, and feet .

In addition to limb deformities, children with achondroplasia also have frontal bossing, thoracolumbar kyphosis, delayed developmental milestones, and spinal stenosis. Therefore, prior to undergoing limb reconstruction surgery, patients with achondroplasia should be neurologically evaluated. Children with achondroplasia typically present for orthopedic evaluation after already having been diagnosed by a geneticist.

The goals of surgery for achondroplasia are to correct upper and lower limb deformities while at the same time increasing stature to the low end of normal height spectrum.⁽⁵⁾

Distraction osteogenesis is a unique clinical method for regenerating local bone deficiencies in length, width, or alignment or in bones with intercalary gaps, nonunions, or osteomyelitis.⁽⁶⁾ As introduced by Ilizarov, gradual mechanical distraction of a low-energy osteomy spontaneously produces potentially unlimited new bone from the local host bon that rapidly remodels to normal structure, even in skeletally mature bone, Ilizarov's work implies that this process is regenerative rather than reparative; consequently he referred to the new bone as "regenerate".⁽⁷⁾

The recognition of the ability of bone to regenerate has stimulated the development of different procedures to lengthen or restore bone loss. External fixators, hybrid systems such as lengthening over an intramedullary (IM) nail, and lately, fully implantable lengthening devices, have been designed in an attempt to regain bone length.⁽⁸⁾

While there are many potential complications of lengthening like mild infection, deep infection, delayed union, non union, nerve and vascular injures, joint contracture, fracture of regenerate bone, and more over the premature consolidation which could occur in cases of achondroplasia.

Finally, one must still weigh the risks of undergoing a major surgical procedure versus the benefits of increasing ones stature by 2" to 3". Proceeding with the surgery is a very personal decision.⁽⁹⁾

Aim of the work

Review of the procedures of stature lengthening, avoiding its obstacles, decreasing and better management of its complications for cosmetic indications and achondroplasic patients.

References

- 1. **Daniel E, Kent G, Binney V, pagdin J**. Trying to do my best as a mother: decision-making in families of children undergoing elective surgical treatment for short stature. Br J Health Psychol 2005; 10:101.
- 2. Edgerton MT, Langman MW, Pruzinsky T. Plastic surgery and psychotherapy in the treatment of 100 psychologically disturbed patients. Plast Reconstr surg 1991; 88:594-406.
- 3. Shedler J, Karliner R, Katz E. Cloning the clinician: a method for accessing illusory mental health. J Clin Psychol 2003; 59(6):635-650.
- 4. **Bidwell JP, Bennet GC, Bell MJ, Withrow PJ.** Leg lengthening for short stature in Turner's syndrome. J Bone Joint Surg Br 2000; 82:1174.
- 5. Paley D, Matz AL, Kurland DB, Lamm BM, Herzenberg JE. Multiplier method for prediction of adult height in patients with achondroplasia. J Pediatr Orthop 2005; 25(4):539-542.
- 6. **Ilizarov GA.** Clinical application of the tension-stress effect for limb lengthening. Clin Orthop 1990; 250:8.
- Aronson J. Biology of distraction osteogenesis. In:Bianchi A, Aronson J, eds. Operative principles of Ilizarov. Baltimore:Williams and Wilkins,1991:42-52.
- 8. Cole JD, Morandi M, Price CT. Extremity Lengthening and bone transport over an intramedullary nail. 60th Annual Meeting, American Academy of Orthopaedic Surgeons, San Francisco, CA, Feb 18-23, 1993.
- 9. Svetlana Ilizarov, S.Robert Rozbruch. Limb Lengthening and Reconstruction Surgery 2007; 44:605-606.

جراحة إطالة القامة

رسائلة توطئه للحصول على درجة الماجستير في جراحة العظام رسالة مقدمة من الطبيب / أحمد محمد محمد على البكر بكالوريوس الطب والجراحة بكالوريوس الطب والجراحة الأستاذ المكتور / أسمه شطا أستاذ جراحة العظام كلية الطب- جامعة عين شمس

الدكتور / خالد عماره

أستاذ جراحة العظام المساعد كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٠

Indications and Contraindications

Limb lengthening aimed at increasing stature is a topic of great current interest and one that triggers debate and controversy among orthopedic surgeons. A growing number of patients in different countries have been requesting this treatment to increase their height, with the awareness that this is the only effective treatment. The reasons behind their requests are numerous and vary from one individual to another, but they can all be summed up in a single common objective, i.e., to alleviate a physical defect to improve quality of life. However, there is no consensus on the indications for lengthening among doctors who deal with physical, social and psychological problems associated with a short stature. The difference of opinion is primarily to the following causes: the different value attached to stature by different ethnic groups and nationalities; the differing evaluation of the cost-benefit ratio of this type of treatment, which varies according to the social, economic and cultural situation of the country; the complex nature of this procedure; and the very high treatment time necessary to complete the surgical procedures and rehabilitation.⁽¹⁾

Precise guidelines were established to select patients suitable for lengthening:

- 1- Major stature deficit as compared with the anthropometric chart and the target stature.
- 2- Disproportional relationship between the trunk and the lower limbs (disproportionate short stature).
- **3-** Reduced physical abilities as compared with a normal stature person of the same age, with respect to the function of the upper and lower limbs.
- 4- Subjective negative judgment by the patient of his/her own stature.
- 5- Negative impact of short stature on social relations, personality and behavior.⁽¹⁾