Cairo University Institute of Statistical Studies and Research Department of Computer and Information Sciences

BUILDING A SPEECH RECOGNITION SYSTEM FOR SPOKEN ARABIC

by

Tarek Ahmed Fouad Ibrahim Sheisha

Under the Supervision of

Prof. Atef M. A-Moneim

Prof. Khaled Fouad Shaalan

Institute of Statistical Studies and Research Cairo University Faculty of Computers and Information Cairo University

A Thesis Submitted to the Department of Computer and Information Sciences In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In

Computer Science

Cairo August 2009

Approval Sheet

BUILDING A SPEECH RECOGNITION SYSTEM FOR SPOKEN ARABIC

By Tarek Ahmed Fouad Ibrahim Sheisha

A Thesis Submitted to the Department of Computer and Information Sciences, Institute of Statistical Studies and Research, Cairo University in Partial fulfillment of the Requirements for the Degree of Master of Science in Computer Science.

Approved by The Examining Committee:

Name

Signature

Prof. Atef M. A-Moneim

Dr. Hesham N. Elmahdy

Dr. Hesham A. Hefny

Hest Hohan

Cairo August, 2009

Statement

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Student Name: Tarek Ahmed Fouad Ibrahim Sheisha

Signature:

Tarek A. Found

Acknowledgements

I would like to express my sincere gratitude to Prof. Atef M. A-Moneim, who supervised and supported my work. This thesis was not made possible without his help and continuous support.

I am grateful to my advisor Prof. Khaled Shaalan for providing me guidance and support in my research.

I would also like to thank Prof. Lori Levin and Prof. Tanja Schultz (CMU) for their insightful discussions.

Finally, I would like to thank my family. They have greatly contributed to the inspiring, creative, and encouraging environment in which I have carried out my work toward this thesis.

ABSTARCT

The automatic recognition of spontaneously spoken speech is a very challenging task because it contains much more disfluencies than the read speech. The difficulty is even increased in case of recognizing colloquial speech. The colloquial speech contains many changes from the standard language such as changes in the syntax, the structure, the letters, and the diacritics. Moreover, the colloquial speech may contain different expressions and slang. Building of Arabic speech system is useful for adding user-friendly interfaces for Arabic software. Also, the embedding of the Arabic speech recognition system in the machine translation systems can allow human-to-human communication across languages boundaries.

In this thesis, a system was built for recognizing spontaneous Egyptian colloquial Arabic. A speech database was collected by recording 20 hours of spontaneously spoken Arabic dialogues. All spoken dialogues were segmented into separate utterances, the corresponding transcriptions were written. The diacritics (FatHa, Dammah, and Kasrah) are included in the transcription of each utterance. The speech database was used to train the acoustic models and the language model, which were used as knowledge sources for building the system. A baseline dictionary was built. A set of phones was chosen, which is suitable for the phonetics of Egyptian colloquial Arabic. A statistical language model, a word bigram Language model, was built using the canonical-form transcriptions of utterances of the speech database. A statistical acoustic model was built for each phone. The acoustic models were based on the Hidden Markov Models (HMMs). There are separate HMMs for the diacritics. All the acoustic models were trained using the speech database. Another system was built through training the models with non-diacritized transcriptions (i.e. the short vowels were removed).

The recognition experiments revealed that the system which was built with the fully diacritized transcriptions had a higher percentage of correctly recognized words. The system was modified by converting the monophone units into triphones units. Another modification was to increase the number of Gaussian mixtures associated with each HMM's state. The optimum values of the word insertion penalty P, and the grammar scale factor S were experimentally found. The percentage of correctly recognized words for the baseline system is 82.87 %.

A proposed data-driven method of modeling pronunciation variation is utilized to improve the baseline system. This method modifies the three levels of the speech recognition system at which modeling can take place; i.e. the dictionary, the acoustic model, and the language model.

A dynamic programming-based algorithm was developed to align the canonical-form transcription of each utterance with the string of phones constituting that utterance. For every utterance, a string of the constituting phones was obtained by a developed phone recognizer. As a result of the alignment process, a set of pronunciation rules was generated. The set of rules was applied on the whole set of canonical-form transcriptions to generate the surface-form transcriptions. The acoustic and language models were re-trained with the surface-form transcriptions. Then, by applying suitable rules on each entry in the dictionary, some pronunciation variants are generated. The baseline dictionary.

The recognition experiments showed that the modeling of the pronunciation variations improved the percentage of correctly recognized words to 91.9 %.

A user interface was developed, through which the recognized sentences are displayed in diacritized Arabic scripts.

Contents

Acknowledgements	
Abstract	
Contents	
List of Figures	xi
List of Tables	xiii
List of Algorithms	xiv
Chapter 1 Background and Related Works	
1.1 Introduction	1
1.2 Speech Recognition System Architecture	2
1.3 The Source-Channel Model of Speech Recognition	3
1.4 A Historical Background on Speech Recognition	4
1.5 Thesis Goal	5
1.6 Thesis Structure	6
Chapter 2 Automatic Speech Recognition	
2.1 Introduction	7
2.2 Acoustic Front-End	8
2.2.1 Speech Signal	9
2.2.2 Acoustic Preprocessing	11
2.3 Acoustic Modeling	16
2.3.1 The Role of Acoustic Modeling	17
2.3.2 Markov Chains	17
2.3.3 Hidden Markov Models	18
2.3.4 The Basic Problems of HMM	21
2.3.5 Evaluation of the HMM	22
2.3.6 The Forward Algorithm	23
2.3.7 Decoding HMMs	25

2.3.8 The Viterbi Algorithm	. 25
2.3.9 Estimating of HMM Parameters	28
2.3.10 HMM Topology	31
2.3.11 Output Distributions	32
2.3.12 Parameter Tying	. 34
2.3.13 The Need for a Language Model	36
2.4 Language Modeling	37
2.4.1 Training the Language Model	40
2.4.2 Perplexity of the Language model	40
2.5 Applications of Speech Recognition Systems	41
2.6 Summery	42
Chapter 3 Search Strategies in Speech Recognition Systems	
3.1 Introduction	43
3.2 The Basic Tasks of the Decoder	. 45
3.3 Isolated-Word Recognition	45
a) Template-Matching Methods	45
b) Dynamic Time Warping DTW	46
3.4 Continuous Word Recognition	47
3.4.1 The One-Stage Dynamic Programming Algorithm .	48
3.5 Token-Passing Algorithm	52
3.6 Decoding for the Large Vocabulary Continuous Speech	
Recognition	53
3.7 Linear and Tree Lexicons	54
3.8 Pruning Techniques	 56
3.9 Cross-Word Expansion	57
3.10 Single-Best versus N-best and Word Graphs	58
3.11 Summery	58
Chapter 4 Arabic Speech	
4.1 Introduction	59
4.2 Arabic Language	59
4.3 Egyptian Colloquial Arabic	 61

4.4 Speech Sounds	61	
4.5 Arabic Phonetics		
4.5.1 Classifications of Arabic Phonemes and IPA		
4.6 Arabic Alphabet and Writing System	68	
4.7 Arabic Diacritics	70	
4.8 Differences between MSA and the Egyptian Colloquial		
Arabic	72	
4.9 A Survey on Arabic Speech recognition	74	
4.10 Summery	77	
Chapter 5 Baseline System Development and Experimental Results		
5.1 Introduction	78	
5.2 The Hidden Markov Model Toolkit	79	
5.2.1 The HTK Software Architecture	79	
5.2.2 Overview on the Different Tools	81	
5.3 Data Preparation Stage	85	
5.3.1 Data Collection	85	
5.3.2 Recording Conditions	85	
5.3.3 The Dialogues	86	
5.3.4 Transcription of the Dialogues	86	
5.3.4.a Transcriptions Standards	87	
5.3.4.b Transcription and Segmentation Software	87	
5.3.4.c Creating the Transcription Files	88	
5.3.5 Preparation of Pronunciation Dictionary	90	
5.3.6 Extraction and Preprocessing of the Feature Vectors	91	
5.3.7 Selection of the Topology and Prototypes of HMM	92	
5.4 Training Stage	94	
5.4.1 Training of the Acoustic Model	94	
5.4.2 Training of the Language Model	96	
5.5 Recognition Experiment 1	97	
5.6 System Improvement by Increasing the Number of		
Components of Mixtures	99	

	5.7	Recognition Experiment 2	100
	5.8	Building a Context-Dependent System	102
		5.8.1 Context-Dependent Models	102
		5.8.2 State Tying	103
		5.8.3 Clustering Techniques	104
		5.8.3.a Data-Driven Clustering	104
		5.8.3.b Decision Tree-Based Clustering	105
	5.9	Recognition Experiment 3	106
	5.10	Recognition Experiment 4	110
	5.11	Recognition Experiment 5	111
	5.12	2 Summery	112
Chap	ter 6	System Improvement by Modeling the Pronunciation	
		Variation	
	6.1	Introduction	113
	6.2	Sources of the Pronunciation Variation	113
	6.3	Methods of Modeling the Pronunciation Variation	114
	6.4	Pronunciation Variation in Conversational Egyptian Arabic	115
	6.5	Canonical Transcription versus Surface-Form Transcription	116
	6.6	Data-Driven Modeling of Pronunciation Variation	116
	6.7	Automatic Extraction of the Pronunciation Rules	117
		6.7.1 Building of a Phone Recognizer	118
		6.7.2 Developing an Algorithm for Automatic Rules	
		Extraction	119
	6.8	Generation of Pronunciation Variants and Re-training	
		of the System	121
	6.9	Recognition Experiment 6	123
	6.10	Recognition Experiment 7	125
6.11 Recognition Experiment 8		125	
	6.12	2 Recognition Experiment 9	127
	6.13	B Developing a User Interface	128
	6.14	Summery and Discussion	129

Chapter 7 Conclusion and Future Work			
7.1 Conclusions	131		
7.2 Future Work	133		
Appendix A Characters Romanization Conventions for Egyptian			
Arabic	134		
Appendix B An Example from the Dialogues			
Appendix C The Top 50 Pronunciation Rules			
Appendix D List of Abbreviations	137		
References	138		

List of Figures

Figure 1.1	Main Components of the Automatic Speech Recognition	
	System	2
Figure 1.2	Source-Channel Model for Speech Recognition System	3
Figure 2.1	The waveform, the wideband spectrogram, and	
	narrowband spectrogram of the phrase "بالتأكيد" (for	
	sure)	1(
Figure 2.2	Block diagram of MFCC front-end analysis	1.
Figure 2.3	Extracting the feature vectors from the speech signal	14
Figure 2.4	Mel-scale filterbank	14
Figure 2.5	The forward trellis computation for the HMM	24
Figure 2.6	The Viterbi trellis computation for the HMM	2
Figure 2.7	Operations required for the computation of $\gamma_t(i, j)$	3
Figure 2.8	A typical Hidden Markov Model used to model a	
	phoneme	3
Figure 3.1	The Alignment Path of the Dynamic Time Warping	
	Algorithm	4
Figure 3.2	Search Space for the Continuous Word Recognition	4
Figure 3.3	Withen-Template Transition Rules	5
Figure 3.4	Between-Templates Transition Rules	5
Figure 3.5	An example of simple linear lexical search space	5
Figure 3.6	Example of a lexical tree	5
Figure 3.7	Cross-word triphone expansion network	5
Figure 4.1	Representation of the human speech production apparatus	6
Figure 5.1	The stages of speech recognition system development	7
Figure 5.2	HTK software architecture	8
Figure 5.3	A screen-snapshot of TransEdit software	8
Figure 5.4	An example of two label files associated with the same	
	speech file	8

Figure 5.5	An excerption from a dictionary	90
Figure 5.6	The configuration parameters for the feature extraction	
	process	91
Figure 5.7	The HMM prototype	92
Figure 5.8	A script that defines the HMM prototype	93
Figure 5.9	The HMM of the silence model	94
Figure 5.10	The HMM of the short pause model	94
Figure 5.11	A Gaussian mixture represented as a set of single	
	Gaussians	100
Figure 5.12	Generation of a multiple mixture monophone model	101
Figure 5.13	Decision tree-based state tying	105
Figure 5.14	Experimental steps to generate triphone models	107
Figure 5.15	Experimental steps to generate tied-state triphones	110
Figure 6.1	An example of the input and output of the rules extraction	
	algorithm	121
Figure 6.2	The variation of system performance with the number of	
	mixture components	126
Figure 6.3	The variation of the recognition time divided by the tested	
	time duration with the number of mixture components	127
Figure 6.4	A graphical user interface of the recognition system	128
Figure 6.5	Comparison of the performance of different systems	129
Figure 6.6	Comparison of the word accuracies of different systems	130

List of Tables

Table 4.1	Some Differences of Pronunciation of Phones	60
Table 4.2	The International Phonetic Alphabet	67
Table 4.3	Phonemes of Modern Standard Arabic (MSA)	68
Table 4.4	Arabic Diacritics	69
Table 4.5	Arabic Alphabet	71
Table 4.6	Examples of phonetic changes	72
Table 4.7	Examples of changes in the diacritics	73
Table 4.8	Examples of changes in the vocabulary	73
Table 4.9	Examples of changes in word order	73
Table 5.1	The recording conditions	86
Table 5.2	Recognition Results for the Recognition Experiment 1	99
Table 5.3	Recognition Results for the Monophone Multiple-	
	Mixture System	102
Table 5.4	Some example questions used in building the phonetic	
	tree	108
Table 5.5	Recognition Results for the Tied-State Triphone system	109
Table 5.6	Recognition Results for Multiple Mixture Triphone Systems	111
Table 5.7	Changing the word insertion penalty P, and the grammar	
	Scale factor	112
Table 6.1	Some Examples of the pronunciation Variation	116
Table 6.2	Example of the output of the phone recognizer	118
Table 6.3	Some examples of the extracted rules	119
Table 6.4	Examples of Multiwords	123
Table 6.5	Results of the Recognition Experiment 6	124
Table 6.6	Results of the Recognition Experiment 7	125
Table 6.7	Recognition Results Recognition Experiment 8	126
Table 6.8	Results of the Recognition Experiment 9	128

List of Algorithms

Algorithm 2.1	The Forward Algorithm	24
Algorithm 2.2	The Viterbi Algorithm	26
Algorithm 2.3	The Forward-Backward Algorithm	29
Algorithm 3.1	The One-Stage Dynamic Programming Algorithm	52
Algorithm 6.1	A Dynamic Programming-Based Algorithm to	
	extract pronunciation rules	120