TWO DIMENSIONAL AND THREE DIMENSIONAL ULTRASOUND SCREENING FOR CONGENITAL FETAL ANOMALIES IN THE FIRST AND SECOND TRIMESTER OF PREGNANCY

A Thesis Submitted for the Fulfillment of M.D.degree in Obstetrics & Gynecology By Mona Saad Moghazy Ahmed Salman

MB. Bch, M.sc

Assistant Lecturer - Faculty of Medicine - Cairo University

Supervised by:

Prof. MOHAMED MOMTAZ AWAD

Professor of Obstetrics & Gynecology Faculty of Medicine -Cairo University

Dr. MONA MOHAMED ABOULGHAR

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine- Cairo University

Dr. AHMAD ZAKARIA EL-SHEIKHAH

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine- Cairo University

> Faculty of Medicine Cairo University 2010

بسم الله الرحمن الرحيم

" قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم" آية ٣٢ البقرة

صدق الله العظيم

Acknowledgements

Thanks to **ALLAH** who helped me finish this work.

I would like to convey my deepest gratitude to **Prof. Mohamed Momtaz.** for his encouragement and support all through and for his fatherly supervision and guidance all the time. TO whom I am really indebted.

I also like to express my profound thanks to **Dr. Mona Aboulghar** for her generous help, genuine concern and total support and patience.

I would like to say that I am deeply thankful to **Dr. Ahmad Zakaria El-Sheikhah** for being extremely helpful and encouraging throughout this work.

Special thanks to all my **Professors** who taught me everything

Many thanks to my **family** for their great support and patience

Table of Contents	
Page	Contents
Ι	Acknowledgement
II	Table of Contents
III	Tables & Figures
IV	List of Abbreviations
V	Abstract
VI	Introduction& Aim of work
	Review of Literature
1	Basics of Ultrasound Physics
21	Three-dimensional Ultrasound
	Applications
40	Patients & Methods
	Results of the Study
45	Results
70	Discussion
83	Summary
85	Conclusion
87	References
101	Arabic Summary

List of Tables		
Table Number	Table Title (Review of Literature)	Page
1	Diagnosis of congenital anomalies by 2D and 3D Ultrasound	25
2	Additional finding and improved visualization of heart anatomy by 3DUS or 4DU in the recently published reports.	34

Table Number	Table Title (Results of the Study) ••••••••••••••••••••••••••••••••••••	Page
1	The Frequency of anomalies {n, (%)} diagnosed by 2D and 3D/4D and definitive diagnosis made by Postnatal/Postmortem in the 146 anomalous cases in different systems	50
2	Postnatal and postmortem findings in cases where discordant diagnoses by three-dimensional ultrasound and two-dimensional ultrasound was made.	51
3	Agreement between 2D and 3D ultrasound in the diagnosis of 146 anomalous cases included in the study; agreement rates and Cohen	53

	Kappa coefficient value.	
4	The agreement between the 3D and the 2D Ultrasound modalities in the diagnosis of the 29 anomalous cases included in the study from the first trimester ^{III} scan and the 117 anomalous cases from the second trimester scan; agreement rates and Cohen Kappa coefficient value	54
5	Comparison of 2D and 3D in the diagnosis of 204 abnormalities identified on postnatal/postmortem examination in 146 anomalous fetuses	55
6	Diagnostic accuracy of 2D and 3D in detecting 161 anomalies in 117 fetuses in second trimester	56
7	Differences in the diagnostic information provided by 2D and 3D in detecting 204 abnormalities in 146 fetuses.	56

List of Figures		
Figure Number	Figure Title(Review of Literature)	Page
1	Rotational and translational scanning in 3D US	7
2	Illustrative drawing of different probe movements for 3D US acquisition	8
3	Appearance of the thoracic vertebrae, ribs, clavicle as well as general appearance of the fetal body with 3D maximum mode.	11
4	Glass body rendering with high definition power Doppler in a fetus with left diaphragmatic hernia	12
5	Glass body rendering with high definition power Doppler in a fetus with pulmonary sequestration	13
6	Volume Contrast imaging showing (a) occipital encephalocele (arrows), (b) normal hand bones and soft tissue.	14
7	Tomographic ultrasound imaging (TUI)of a case of semilobar holoprosencepahly.	15
8	High definition flow (HD flow) of the pulmonary arterial and venous	16

	blood flow	
9	Fetal heart using STIC with Doppler showing overriding of the aorta in a case with Fallot Teratology	18

Figure Number	Figure Title(Results of the Study)	Page
10	Parity of the studied group.	45
11	Frequency (%) of abnormalities	52
	correctly diagnosed by 2D and 3D in	
	the 146 anomalous cases when	
	compared to the definitive diagnosis	
	(Postnatal/Postmortem examination)	
	in different systems.	
12	3D ultrasound picture of fetus with cleft lip	57
13	3D ultrasound picture of cleft plalate using the maximum mode	57
14	ultrasound picture of a case with cleft lip and palate	58
15	Cleft palate seen using the maximum mode (a); cleft lip and secondary palate as seen in the multiplanar view (b)	59
16	3D ultrasound picture of a fetus with anencephaly	59
17	3D ultrasound volume picture of a fetal chest showing pulmonary CCAM (congenital cystic adenomatoid malformation) measured using VOCAL technique	60

18	A 3D ultrasound rendered image of a fetal spine showing a hemivertebra.	60
19	A 3D multiplanar view showing a sacral meningocele.	61
20	A surface rendered image of fetal back showing a lumbosacral meningomyelocele	61
21	A surface rendered image of fetal lower limbs in a case of bilateral talipes	62
22	A surface rendered image a fetal abdomen showing free intestinal loops in a case of gastroschisis	62
23	A surface rendered image showing a 13+2 weeks fetus with a cystic hygroma and a small omphalocele.	63
24	A multiplanar view of fetal abdomen showing ascites and echogenic bowel	63
25	A 3D picture of a fetal spine a large defect in a case with lumbosacral spina bifida.	64
26	Fetal heart using STIC showing overriding of the aorta in a case with Fallot Teratology	64
27	Fetal heart using STIC showing a right descending aorta	65
28	A 3D Ultrasound image showing a	65

	large pulmonary CCAM (congenital cystic adenomatoid malformation)	
29	A multiplanar view of fetal face showing a large proboscis in a case with holoprosencephaly.	66
30	Both (a) and (b) are 2 different views of a surface rendered image of clenched hands	67
31	Post termination photo of a fetus showing encephalocele in a case of Meckle Gruber syndrome	68
32	Post termination photo of a fetus with anencepahly and umbilical cord cyst	69
33	Postnatal photo of a fetus with bilateral talipes and ambiguous genitalia	69

List of Abbreviations		
20	Two dimensional	
2D 3D	Three-dimensional	
	Four-dimensional	
	Three-dimensional ultrasonography	
	Atrioventricular septal defect	
CCAM	congenital cystic adenomatoid malformation	
CDH	Congenital diaphragmatic hernia	
CHDs	Congenital Heart Defects	
CNS	Central nervous system	
CW	Continuous Wave	
F&N	face and neck	
GUN	GUN, genitourinary system	
HDF	High Definition Flow	
NTT	Nuchal translucency thickness	
p value	probability value	
PW	Pulsed Wave	
ROI	Region of interest	
SPSS	Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA	
STIC	Spatio-Temporal Image Correlation Technique	
TGA	transposition of great arteries	
TOF	Teratology of Fallot	
TOGV	transposition of great vessels	
ТОР	Termination of pregnancy	
TUI	Tomographic ultrasound imaging	
TUI	Tomographic ultrasound imaging	
TUI	Tomographic ultrasound imaging mode	
VCI TM	volume contrast imaging	
VOCAL	virtual organ computer-aided analysis	
VSD	Ventricular septal defect	
wks	weeks	

Abstract

There has been a steep rise in the diagnostic capability of ultrasound over the last few years. With the availability of advanced ultrasound equipments and highly skilled trained operators, threedimensional ultrasound is now becoming increasingly integrated in the assessment of fetus based on its potential advantage. Its potential advantages render this modality helpful but we need to test its accuracy and reliability.

The aim of our study was to determine if the examination of the 3D/4D volume datasets adds any diagnostic information to what is provided by 2D Ultrasound examination in relation to the definitive diagnosis which postnatal/postmortem examination.

In our study we compared the diagnostic information yielded from the use of 3D ultrasound to that of 2D in the diagnosis of fetal abnormalities in 146 women with anomalous fetuses

Key wards: Three dimensional – Two dimensional – anomalies

Introduction

Since its inception in the early 1950s, conventional two-dimensional has been the cornerstone of prenatal diagnosis of fetal malformations. However, over the last few years a steep rise in the diagnostic capability of ultrasound becomes recognized. This is attributed to the ongoing advances in technology and the sound availability of advanced ultrasound equipments and highly skilled trained operators. Three-dimensional ultrasound is considered one of the innovations of technology. It has now becoming increasingly integrated in the assessment of fetus based on its potential advantage. (*Baba et al, 1999*)

One of the great advantages of 3D ultrasound is that the information remains captured as a volume and it is possible to reconstruct the recorded image and modify all the adjustments as if the patient was still present. This enables us to manipulate the image, re-rotate it three dimensionally and achieve another 3D reconstruction from the data already taken. (*Goncalves et al, 2005*)

In other words, this technology allows spatial analysis of the image viewed by the conventional 2D ultrasound through simultaneous assessment of areas of interest in the three orthogonal planes. Hence, the examiner's ability to ascertain a diagnosis while no longer restrained by limitations of the static 2D images. Moreover, it distinctively allows visualization of planes which might not be possibly obtained by the conventional 2D. (*Kalache et al, 2006*)

These potential advantages combined with the simplicity of performing 3D volume manipulation following pre-defined structured steps render 3D ultrasound a potentially important tool. (*Kurjak et al*, 2007)

Since it has been remained disputed the conflicting results in the literature regarding the accuracy of two-dimensional ultrasound in detecting major congenital anomalies (*Lee et al, 2007*), three-dimensional ultrasound can potentially be a valuable adjunct to 2D in the diagnostic process based on its advantages. However for the potential advantages to be realised then we have to define whether the analysis of 3D volumes is reliable.

We believe that the wide acceptance of 3D in clinical practice is based on studies that determine its accuracy as a modality in comparison with the standard 2D particularly in reference with the availability of postnatal confirmation of the anomalies suggested.

We therefore, compared the diagnostic information provided by 3D to that provided by 2D in the diagnosis of congenital anomalies in high risk patients and we then compared the data obtained with the postnatal/postmortem definitive diagnosis.