T Helper 17 Cells In Systemic Lupus Erythematosus Patients By Real Time Polymerase Chain Reaction

Thesis Submitted for the Fulfillment of Master Degree in Clinical and Chemical Pathology

Presented By

Marianne Nabil Youssef Abadir M.B., B.Ch.

Supervised By

Prof. Dr. Safaa Mostafa El Karaksy

Professor of Clinical and Chemical Pathology

Faculty of Medicine

Cairo University

Dr. Mariam Onsy Farag Hanna

Ass. Prof. of Clinical and Chemical Pathology

Faculty of Medicine

Cairo University

Dr. Hala Ahmed Raafat Youssef

Ass. Prof. of Rheumatology and Rehabilitation

Faculty of Medicine

Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY

2010

Abstract

The novel T helper 17 subset have been associated with several autoimmune disorders in humans. They secrete a distinctive set of immunoregulatory cytokines, including IL-17A, IL-17F, IL-22, and IL-21. T helper cells have been extensively studied in SLE. Th 17 cells were assessed in SLE by assessing the expression of the lineage specific transcription factor, retinoic acid related orphan receptor gamma t (ROR γ t) determined by Real Time PCR. Our results have shown a significant reduction of ROR γ t in SLE patients compared to control subjects.

Keywords

SLE – T helper 17 – RORγt - Real time PCR

ACKNOWLEGEMENTS

First of all, I must offer my thanks to The Lord for being able to finish this research.

I would like to express my deep gratitude to Prof. Dr. Safaa Mostafa El Karaksy, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for her tremendous help, her valued experience, her extreme patience and her non ending support for me throughout this research.

Also my deep gratitude goes to Dr. Mariam Onsy Farag Hanna, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for her continuous encouragement, her advice and her great guidance and experience throughout every step of the research.

I would also like to offer my gratitude to Dr. Hala Ahmed Raafat Youssef, Assistant Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University for her continuous help, her advice and her experience that helped me achieve my work.

Finally, I am grateful to everyone who has given me much of their time and effort to help finish this research.

DEDICATION

I dediacte this work to my recently departed uncle. May you rest in peace.

Also, I would like to dedicate this work to my husband for his loving support.

To my parents, my brother and my aunt for their encouragement, love and support. I could not achieve anything if not for you.

Finally, to my beloved daughter Helen for bearing with me during my work on this research.

CONTENTS

CONTENTS	1
List of Figures	3
LIST OF TABLES	4
LIST OF ABBREVIATIONS	6
INTRODUCTION AND AIM OF WORK	10
REVIEW OF LITERATURE	12
SYSTEMIC LUPUS ERYTHEMATOSUS	12
1. Immunopathogenesis	12
2. CLINICAL FEATURES	34
3. Diagnosis	48
4. Treatment	51
T HELPER CELLS	54
MATURATION OF T LYMPHOCYTES	54
ROLE OF TOLL-LIKE RECEPTORS	56
ROLE OF DENDRITIC CELLS	57
CD4+ T LYMPHOCYTE LINEAGES	58
DEVELOPMENT AND HOMEOSTASIS OF THE T REGULATORY CELL	61
FUNCTIONAL FEATURES OF TREG CELLS: IMMUNE REGULATION BY F	
T CELLS	
T HELPER 17 CELLS	
DISCOVERY OF MURINE TH17 AND THEIR ORIGIN	
RETINOIC-ACID RELATED ORPHAN RECEPTORS (RORS)	
THE DIFFERENTIATION OF HUMAN TH17 CELLS	71
IL-17 FAMILY OF CYTOKINES	74
PHENOTYPIC AND FUNCTIONAL FEATURES OF HUMAN TH17 CELLS	77
Possible role of Th17 cells in human immunopathology	78
SUBJECTS AND METHODS	81
RESULTS	94
DISCUSSION	121
SUMMARY AND CONCLUSIONS	131

REFERENCES	133
ARABIC SUMMARY	166

List of Figures

Figure 1 Overview of the stages and pathogenesis of Systemic Lupus	
Erythematosus	13
Figure 2 T cell subtype	57
Figure 3 Pathway of murine Th17 differentiation.	67
Figure 4 Schematic structure of the various human (h) and mouse (m) ROR	
isoforms	69
Figure 5 Mechanism of action of RORs, physiological functions and roles in	
disease	70
Figure 6 Pathway of human Th17 differentiation	73
Figure 7 Main activities attributed to Th17 cells	75
Figure 8 Steps of RNA extraction	85
Figure 9 Cleavage Step in the PCR reaction	89
Figure 10 PCR Amplification plot	92
Figure 11 Mean ± SD of SLEDAI in active and inactive SLE patients	.117
Figure 12 Comparison of RORyt mRNA expression (RQ) between the studied	
SLE patients and the control group	.117
Figure 13 Comparison of mean \pm SD of ROR γ t mRNA expression levels as	
regards the different clinical manifestations in the studied SLE patients	.118
Figure 14 Comparison of mean \pm SD of ROR γ t mRNA expression levels as	
regards the different laboratory investigations in the studied SLE patients (TLC	(',
platelet count, dsDNA antibodies)	.118
Figure 15 Comparison of mean \pm SD of ROR γ t mRNA expression levels as	
regards the different laboratory investigations in the studied SLE patients	
(AntiSmith antibodies, C3 and C4 consumption)	.119
Figure 16 Correlation between RQ of RORγt mRNA expression level and	
SLEDAI score	.120

List of Tables

Table 1 Characteristics of Pathogenic Autoantibodies.	15
Table 2 Histologic Classification of Lupus Nephritis According to the	
International Society of Nephrology/Renal Pathology Society, 2003	38
Table 3 Management of Thrombocytopenia in Systemic Lupus Erythemator	sus43
Table 4 Neuropsychiatric Syndromes in Systemic Lupus Erythematosus	44
Table 5. The 1997 Update of the 1982 American College of Rheumatology	I
Revised Criteria for Classification of Systemic Lupus Erythematosus	50
Table 6 Systemic Lupus Erythematosus Disease Activity Index.	
Table 7 Preparation of cDNA reaction mix	
Table 8 Thermal Cycler conditions for performing reverse transcription	
Table 9 PCR Reaction Mix (Target Gene RORγt)	
Table 10 PCR Reaction Mix (Reference Gene GAPDH)	
Table 11 PCR reaction conditions.	
Table 12 Individual clinical data of the SLE patients	101
Table 13 Individual laboratory data of the SLE patients	
Table 14 Individual SLEDAI and treatment of the SLE patients	
Table 15 Descriptive Statistics of clinical data and treatment of SLE patient	
Table 16 Descriptive Statistics of the laboratory data of the studied SLE par	tients
(CBC, ESR, Liver Function, Creatinine)	108
Table 17 Descriptive Statistics of laboratory data of the SLE patients	109
Table 18 Descriptive Statistics of SLEDAI in the SLE patients	110
Table 19 Age, sex and RORγt mRNA expression levels in the studied SLE	
patients	111
Table 20 Age, sex and RORγt mRNA expression levels in the control subje	cts .112
Table 21 Comparison of RORyt mRNA expression levels in the SLE patien	its and
control subjects	113
Table 22 Comparison of mean \pm SD of ROR γ t mRNA expression levels as	regards
to the different clinical manifestations in the studied SLE patients	114
Table 23 Comparison of RORγt mRNA expression levels (RQ) as regards t	o the
different laboratory investigations in the studied SLE patients	115
Table 24 Comparison of mean \pm SD of ROR γ t mRNA expression levels in	less
active and more active patient groups according to SLEDAI	116

Table 25 Comparison of mean \pm SD of ROR γ t mRNA expression levels in patients
treated with steroids only and those treated with steroids and immunosuppressives
116

List of Abbreviations

Abbreviation	
ACL	Anticardiolipin Antibody
ACR	American College of Rheumatologists
AF2	Activation Function 2
ANA	Anti-nuclear Antibodies
Anti dsDNA	Anti double stranded DNA Antibodies
AntiSm Ab	Anti Smith Antibodies
APCs	Antigen Presenting Cells
BAFF	B Cell Activating Factor
BCR	B Cell Receptor
β-МЕ	β-Mercapto Ethanol
C_1q	Subcomponent of Complement 1
CC	CC Chemokine
CCL	CC Chemokine Ligand
CCR6	CC Chemokine Receptor 6
CD	Cluster of Differentiation
cDNA	Complementary Deoxyribonucleic acid
CIA	Collagen Induced Arthritis
CNS	Central Nervous System
con A	Concanavalin A
CpG	"—C—phosphate—G—" region of DNA
CR	Complement Receptor
CTLA-4	Cytotoxic T Lymphocyte Antigen 4
CXC	CXC Chemokine
CXCL	CXC Chemokine Ligand
DBD	DNA Binding Domain
DCs	Dendritic Cells
DLE	Discoid Lupus erythematosus
DN	Double Negative
DNA	Deoxyribonucleic acid
DVT	Deep Venous Thrombosis
EAE	Experimental Autoimmune Encephalomyelitis

Abbreviation	
EBV	Epstein Barr Virus
ECG	Electro-Cardiogram
EDTA	Ethylene-Diamine-Tetraacetic Acid
ELISPOT	Enzyme-Linked immunosorbent spot
ESR	Erythrocyte Sedimentation Rate
FAS	Apoptosis Stimulating Fragment
FcγRIIA	Fragment Crystallizable Gamma Receptor Class IIA
FcγRIIIA	Fragment Crystallizable Gamma Receptor Class IIIA
FOXP3	Forkhead Box Protein 3
G-CSF	Granulocyte-Colony Stimulating Factor
HLA	Human Leukocyte Antigen
ICOS	Inducible Co stimulator
ICOS-L	Inducible Co stimulator Ligand
IDO	Indolamine 2,3- dioxygenase
Ids	Idiotypes
IFNα	Interferon α
IFNγ	Interferon γ
Ig	Immunoglobulin
IL	Interleukin
IL-17R	Interleukin 17 Receptor
IL-23R	Interleukin 23 Receptor
ILT-3	Immunoglobulin Like Transcript-3
ILT-4	Immunoglobulin Like Transcript-4
iNKT	invariant Natural Killer T cells
IDDY	Immune dysregulation, Polyendocrinopathy, Enteropathy, X-
IPEX	linked syndrome
IRF5	Interferon Regulatory Factor 5
iTreg	Induced T regulatory cells
JAKs	Janus Kinases
LBD	Ligand Binding Domain
MBL	Mannose Binbing Lectin
MCP-1	Monocyte Chemotactic Protein 1

Abbreviation	
MHC	Major Histocompatibility Complex
MMP	Matrix Metalloproteinase
mRNA	
	Messenger Ribonucleic acid Nitric Oxide Synthase
NOS	•
NPSLE	Neuro-psychiatric Systemic Lupus Erythematosus
NR2a, NR2b	N-methyl D-aspartate Receptor Subunits
NSAID	Non-steroidal Anti Inflammatory Drugs
nTreg	Natural T regulatory cells
PAMPs	Pathogen Related Molecular Patterns
PBMCs	Peripheral Blood Mononuclear Cells
PCR	Polymerase Chain Reaction
PD-L1	Programmed Death-Ligand 1
PHA	Polyhydroxyalkanoates
PRR	Pattern Recognition Receptors
PTPN22	Protein Tyrosine Phosphatase, non-receptor type 22
PWM	Pokeweed Miotgen
RA	Rheumatoid Arthritis
RNA	Ribonucleic acid
RNP	Ribo-nucleo Protein
ROREs	Retinoic acid related Orphan Receptor Elements
RORα	Retinoic Acid Related Orphan Receptor α
RORγt	Retinoic Acid Related Orphan Receptor gamma t
RQ	Relative Quantitation
SCLE	Subacute Cutaneous Lupus Erythematosus
SD	Standard Deviation
shRNA	Short Hairpin Ribonucleic Acid
SLE	Systemic Lupus Erythematosus
SLEDAI	Systemic Lupus Erythematosus Disease Activity Index
SmD1	Sm protein D1
STAT	Signal Transducers and Activators of Transcription
T-bet	T box transcription factor
TCR	T Cell Receptor

Abbreviation	
TGFβ	Transforming Growth Factor β
Th1	T Helper 1 cells
Th17	T Helper 17 cells
Th2	T Helper 2 cells
TLR	Toll Like Receptor
TNF	Tumour Necrosis Factor
Treg	T regulatory cells

INTRODUCTION AND AIM OF WORK

Introduction

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by the production of multiple autoantibodies, complement activation and immune-complex deposition, causing tissue and organ damage. The disease occurs nine times more often in women than in men, especially between the ages of 15 and 50, and is more common in those of non-European descent (**Zhao** *et al.*, **2010**).

SLE is a multisystem disorder affecting virtually all systems. Joints, skin and blood are affected in 80 -100 % of cases. Kidneys, central nervous system and cardio-vascular system are affected in over 50% of cases, while thrombosis associated with presence of anti- cardiolipin antibody is present in 10 % of cases. The course of the disease is unpredictable, with periods of exacerbations (called *flares*) alternating with remissions (**Hahn and Tsao, 2009**).

The T Helper subsets, characterized by different profiles of cytokine production, have been identified in both mice and humans. Th1 cells produce IFN- γ and are mainly devoted to protection against intracellular microbes, whereas Th2 cells produce IL-4, -5, -9, and -13 and are involved in the protection against gastrointestinal nematodes, but are also responsible for allergic disorders (**Romagnani, 1997**). Th0 (type 0) is a third type of T Helper that is able to produce both the cytokines of Th1 and Th2 (**Mosmann and Sad, 1996**).

Th17 cells were identified as an independent lineage of CD4 T cells that secrete a distinctive set of immunoregulatory cytokines, including IL-17A, IL-17F, IL-22, and IL-21(Unutmaz, 2009; Jetten, 2009). These cytokines collectively play roles in inflammation and autoimmunity and in response to extracellular pathogens. The expression of the lineage-specific transcription factor retinoic acid receptor-related orphan receptor RORγt leads to Th17 lineage commitment (Manel et al., 2008).

Th 17 cells have also been incriminated in two murine autoimmune models, namely, experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA) (Harrington *et al.*, 2006).

IL-17 is a pleiotropic proinflammatory cytokine that enhances T cell priming and stimulates epithelial, endothelial and fibroblastic cells to produce multiple proinflammatory mediators, including IL-1, IL-6, TNF- and chemokines (Kolls and Linden, 2004).

In humans, IL-17 and CD4+ Th17 cells have been implicated in multiple sclerosis (Tzartos et al., 2008), rheumatoid arthritis (Chabaud et al., 1999), psoriasis (Wilson et al., 2007), Crohn's disease and ulcerative colitis (Homey et al., 2000; Annunziato et al., 2007).

The objective of our work is to study the role of Th17 cells in SLE patients by assessing the expression of the lineage specific transcription factor, $ROR\gamma t$ determined by Real Time PCR, in the hope that we can better diagnose and treat SLE in the future.