تدخلات التغذية التكميلية للنساء الحوامل المصابات بالانيميا: تطبيق نماذج التعزيز الصحي

رسالة مقدمة للحصول على درجة الدكتوراة في علوم التمريض (تمريض صحة المجتمع)

مقدمة من مريم عامر اسماعيل الطل

> كلية التمريض جامعة عين شمس

تدخلات التغذية التكميلية للنساء الحوامل المصابات بالانيميا: تطبيق نماذج التعزيز الصحي

تحت إشراف

. . نوال محمود سليمان

كلية التمريض _ جامعة عين شمس

. . فاتن خيرت الجندي استاذ ورئيس قسم صحة المجتمع كلية التمريض – جامعة عين شمس

د. هشد اخصائى الجراحة النسائية والتوليد

> كلية التمريض جامعة عين شمس حزيران/٢٠10

Complementary Nutritional Intervention for Anemic Pregnant Women Applying Health Promotion Model

Thesis

Submitted in Partial Fulfillment of Requirement of the Doctorate Degree

In
Nursing Science
Community Health Nursing

By Mariam Amer Al-Tell

Assistant Lecturer in Faculty of Nursing
An-Najah University/Palestine

Ain Shams University 2010

Complementary Nutritional Intervention for Anemic Pregnant Women Applying Health Promotion Model

Supervised by

Prof. Dr. Faten Khayrat el-Guindi

Prof.Dr. / Nawal Mahmoud Soliman

Head of Community Health Nursing

Department

Prof. of Community Health Nursing

Prof of Community Health Nursing

Faculty of Nursing Ain Shams University

Faculty of Nursing

Ain Shams University

Dr Hisham El-Nana

MD of Obstetric And Gynecologist

Faculty of Nursing Ain Shams University 2010

Abstract

Iron deficiency anemia is one of the main health problems in Palestine, it affects about a quarter of pregnant women who attended the Ministry of Health facilities in the West Bank. It is preventable awhile its consequences can't be prevented or treated easily. Health Believe Model (HBM) is widely used in intervention programs that aiming to change behaviors. **The** aim of study was to evaluate the effect of nutritional interventions using health promotion model through changing in their perception regard the risk of anima. Research design: Quasi-experimental design, using control group. Sample: it was a convenient sample included 102 pregnant from antenatal care (ANC) of MOH in Nablus city/Palestine. **Research tool:** 5 tools were used for data collection; the interviewing questionnaire that consist of 6 parts; the socio-demographic and maternal profile of pregnant women, their knowledge about anemia, their perception about risk and susceptibility to iron anemia, their dietary habits/practice and their one week diet sheet, the last one was their fatigue scale and general health . The second tool was the investigation /laboratory tool that assessed the hemoglobin level of pregnant women and their new born. Third tool was physical assessments of pregnant women. The fifth one was observational tool regard signs of anemia. All pregnant women interviewed, and results of blood samples for hemoglobin level obtained from the MOH laboratories. Data were analyzed using SPSS soft ware. The study **results** showed overall significant relationship between perceiving risk of anemia and eating practices, and between changing eating practices and improvement in hemoglobin level of pregnant women, also showed a significant relationship between hemoglobin and fatigue level of pregnant women. And there was no relationship between maternal hemoglobin at third trimester and A/S at 5 minutes and cord blood hemoglobin level of their newborn in study control group (r=959). Actions at mother child health centers regarding management of anemia among pregnant women using principles of Health Promotion Model/Health Belief Model in different intervention programs should be recommended.

Dedication

To father's soul, my mom, brothers, sisters, friends with love and respect

ACKNOWLEDGEMENT

FIRST, THANKS AND PRAYS TO ALLAH

I WOULD LIKE TO THANK AND EXPRESS MY GRATITUDE AND APPRECIATION TO PROF. NAWAL MAHMOUD SOLIMAN, PROFESSOR OF COMMUNITY HEALTH NURSING DEPARTMENT FACULTY OF NURSING, AIN SHAMS UNIVERSITY, FOR HER PRECISE SUPERVISION, EMINENT SUPPORT, ETERNAL ENDURANCE, HELP AND COUCHING, I WAS SO FORTUNATE TO CARRY OUT THIS WORK UNDER HER GUIDANCE.

I WOULD LIKE ALSO TO THANK DR. FATEN ELJENDI, PROF. OF COMMUNITY HEALTH NURSING, HEAD OF COMMUNITY HEALTH DEPARTMENT, FACULTY OF NURSING, AIN SHAMS UNIVERSITY FOR HER SUPERVISION AND ENCOURAGEMENT THROUGHOUT THE ACCOMPLISHMENT OF THIS WORK.

IT IS ALSO A PLEASURE TO EXPRESS MY GRATITUDE TO **DR. HISHAM ELNANA**, OBSTETRICIAN AND GYNECOLOGIST /PART TIME LECTURER OF OBSTETRICS AND GYNECOLOGY, FACULTY OF MEDICINE, AN-NAJAH UNIVERSITY FOR HIS ENCOURAGEMENT TO ACCOMPLISH THIS WORK.

Contents

	Page	
- Introduction		1-4
- Review of literature		
I. Nutrition and anemia during pregnancy	•••••	6
- Definition and Types of anemia	•••••	7
- Epidemiology of anemia		7-10
- Pregnancy and physiology of pregnancy	•••••	10
- Nutrition during pregnancy	•••••	11
- Iron deficiency anemia	•••••	12
- Signs of anemia	•••••	14
Assessment of health status of women during pregnancy	y	
- Laboratory diagnosis of anemia	•••••	15
- Anthropometric measurement		17
- Contributing factors of Iron anemia deficiency		20
- Iron balance and homeostasis		21
- Iron deficient stages		22
- Internal iron exchange	•••••	23
- Iron absorption and execrations and	•••••	24
- iron bioavailability	•••••	25
- Estimated iron absorption	•••••	26
- Factors affecting iron absorption	•••••	27-30
- Consequences and adverse effect of anemia		30-34
- Strategies to improve iron absorption		34-41
- Complementary diet for treating anemia		42-45
II. Health education and health promotion models	•••••	46
- Reasoned reaction theory	•••••	47
- PRECCED-PROCED model		50
- Health Believe model HBM		51-57
III. Role of Nurse at MCH centers		58-67
- Subjects & Methods	•••••	68-87
- Results	•••••	88-136
- Discussion		137-178
- Conclusion and Recommendations		179-183
- Summary		184-194
- References	•••••	195-226
-Appendices		
-Research tool		
-Administrative letters		
-Ethical consent form		
-Booklet		
-Preprogram sessions		
-Protocol		
-Arabic summary		

List of Tables

No.	Tables related to Literature Review	Page
1	Recommended weight gain during pregnancy based on BMI before pregnancy	1
2	Degree of ion bioavailability in food	
3	Components of the theory of reasoned action	
4	Components of HBM	5
5	Components and application of HBM	5

Tables Related To Results

No	Table of Results	Page No.
I.1	Table (1): The Distribution of percentages of	2,00
	study and control group regards their socio	
	demographic profile	
I.2	Table (2): The Distribution of percentages	9
	study and control group regards maternal	
	history	
II.1	Table (3): Distribution of percentages of study	9
	and control groups regards iron supplement use	
III.1	Table (4): Distribution of the mean and	9
	standard deviation of study and control group	
	regards their vital signs	
III.2	Table (5): Distribution of the mean and	
	standard deviation of study and control group	
	regards their anthropometric measurements	
III.3	Table (6): Distribution of study and control	

	group regards their Body Mass Index	
	categories	
III.4	Table (7): Distribution of percentages of study	
	and control groups regarding signs of anemia	
IV	Table (8): Distribution of percentages of study	
	and control group regarding their hemoglobin	
	levels pre-post –CNI	
V.1	Table (9): Distribution of percentages of study	103
	and control groups regards fatigue levels pre-	
	post CNI	
V.2	Table (10): Distribution of percentages of study	105
	and control groups regards general health pre-	
	post-CNI	
VI.1	Table (11): Distribution of percentages of study	106
	and control groups knowledge regards food	
	groups pre-post CNI	
VI.2	Table (12): Distribution of percentages of study	108
	and control groups regard their knowledge	
	about anemia pre-post CNI	
VI.3	Table (13): Distribution of percentages of study	110
	and control groups regards knowledge levels	
	about food groups and anemia, pre-post-CNI	
VI.4	Table (14) Distribution of percentages of study	112
	and control groups regards their source of	
	information	
VII.1	Table (15): Distribution of percentages of study	113
	and control groups perception regard danger of	
	IDA, pre-post CNI	
VII.2	Table (16): Distribution percentages of study	115
	and control groups regard their susceptibility to	
	IDA pre-post-CNI	
VII.3	Table (17): Distributions of percentages of	117
	study and control groups regards their	
	perception level about danger and susceptibility	
	to IDA pre-post-CNI	

VIII.1	Table (18): Distribution of percentages of study and control groups regards their food preparing practices pre-post-CNI	119
VIII.2	Table (19): Distribution of percentages of study and control groups regards their eating habits pre-post CNI	121
VIII.3	Table (20): Distribution of percentages of daily amount of nutrient of study and control group	123
VIII.4	Table 21 Distribution of percentages of study and control groups regards their levels of cooking and eating habits pre-post CNI	124
X.1	Table (22) Distribution of percentages of study and control groups regard their pregnancy out come	126
	Table (23): Distribution of mean scores of health belief model variables pre-post CNI	128
XI.1	Table (24):Relationship between pregnant women's knowledge of levels and their perceiving level of risk and susceptibility of anemia	129
XI.2	Table (25): Relationship between pregnant women's level of practice and their knowledge levels and perceiving level of risk and susceptibility of anemia post-CNI	130
XI3	Table (26): Relationship between pregnant women's dietary practices and their hemoglobin levels of study and control groups post -CNI	131
XI.4	Table (27):Relationship between maternal hemoglobin level at 3 rd trimester and fatigue levels of both groups post –CNI	132
XI.5	Table (28): Relationship between maternal hemoglobin levels at 3 rd trimester with pregnancy outcome; infant weight, Apgar score, and hemoglobin levels	133

List of Figures

List of Figures related to literature review

No.		Page
1	My pyramid	12
2	Reasoned action theory	47
3	PRECEED-PROCEED theory	50
4	Health Belief Model	53

List of figures related to results

2100 01 116	sures related to results	
1	Figure (1): Distribution of percentages of	94
	iron supplementary use by study group	
2	Figure(2): Distribution of percentages of	94
	iron supplementary use by control group	
3	Figure (3): Distribution of percentages of	99
	pre-pregnancy Body Mass Index of study	
	and control groups	
4	Figure (4): Distribution of percentages of	102
	hemoglobin levels of study and control	
	groups during the three pregnancy	
	trimesters	
	Figure (5): Distribution of percentages of	104
5	fatigue levels of study and control groups	
	pre-post CNI	
6	Figure (6):Dstribution of percentages of	
	knowledge levels of study and control groups	111
	about food group pre-post CNI	
7	Figure(7) Distibution of percentages of	111
	knowldege levels of study and control groups	
	regard anemia pre-post CNI	
8	Figure (8): Distributions of percentages of	118
	study and control group regard their	
	perception levels about risk of anemia pre-	
	post CNI	
9	Figure (9): Distribution of percentages of	118

	study and control group regard their levels	
	of susceptibility to anemia pre-post-CNI	
10	Figure (10): Distribution of percentages of	125
	study and control group regard their levels	
	cooking habits pre-post CNI	
11	Figure (11): Distribution of percentages of	125
	study and control group regard their levels	
	of eating practices/habits pre-post CNI	
12	Figure (12): Relationship of new-born body	134
	weight and maternal hemoglobin levels at	
	3 rd trimester for the study and controlgroups	
13	Figure (13): Relationship of the Apgar score	135
	of new-born at one minute and maternal	
	hemoglobin level at 3 rd trimester for study	
	and control groups	
14	Figure (14): Relationship of the Apgar score	135
	of new-born at five minutes and maternal	
	hemoglobin level at 3 rd trimester for study	
	and control groups	
15	Figure (15): Relationship of new-born	136
	hemoglobin levels and maternal hemoglobin	
	level at 3 rd trimester for study and control	
	groups	

INTRODUCTION

Anemia is one of the major public health problem worldwide, based on the classification reported by **Kraemer & Zimmermann** (2007), anemia is considered a severe public health problem when the percent is (40%), and it is moderate one if the percent is (20–39.9%), and a mild problem if it is (5–19.9%), and it is not considered a public health problem if the percent is less than (5%). Moreover it is associated with increased risk of morbidity and mortality, especially among children and pregnant women.

Iron deficiency anemia has several adverse effects on pregnant women. During pregnancy it has been associated with increased risk for low birth weight, preterm delivery, and pere-ntal mortality. Moreover, recent studies suggested that, maternal iron deficiency anemia may be associated with postpartum depression, and poor performance on mental and psychomotor tests in off spring, (AHRQ, 2006).

According to (**Skikne**, **2007**), different etiological causes are responsible about anemia includes iron deficiency, hemoglobin-pathies, chronic disease, and nutritional deficiencies.

The severity of iron deficiency anemia in a population is evaluated based on the Prevalence of anemia. A prevalence of (20%) or greater is considered a high prevalence (**Burger**, 2002).

Using the values of 13.5 g/dL for men and 12.5 g/dL for women as cut point for anemia, it is estimated that the prevalence of anemia in United States is approximately (4%) of men and (8%) of women. And it is the same in Canada and Northern Europe. In underdeveloped countries, the prevalence of

anemia is 2-5 times greater than that in the United States, (**Conrad**, **2008**). The highest prevalence of anemia is in Africa, while in Asia are the greatest number of people affected by anemia, where (58.0%), (56.1%), and (68.0%), of the global anemia burden exists in preschool aged children, pregnant women and non pregnant women, respectively (**Kraemer& Zimmermann**, **2007**).

Iron deficiency is the highly associated factor of nutritional anemia during pregnancy. As pointed by **Brown et al (2008)**, the estimated incidence rate of iron deficiency anemia among pregnant women reached up to (56%) in developing countries compared to (18%) in developed countries. In addition, it is associated with increased risk of premature birth, low birth weight and perinatal mortality (**Sharam2003**).

According to WHO, the prevalence rate of IDA among pregnant women world wild is (55.8%), (Yekta, etal, 2008), and about (58%) of women in developing countries are anemic (Moradi, etal, 2007), most of them were already anemic at the time of conception, and the prevalence of anemia in non-pregnant women in developing countries estimated by (43%), (Brown, et al 2008) & (Allen, 2000).

Significance of the problem

In Palestine, anemia is still considered a public health problem, as it affects about a quarter of pregnant women who attended the ministry of health facilities in the West Bank. The baseline during December 2005- January 2006 is (23%) in west bank and (42.6%) in Gaza strip (**WHO**, **2006**). As reported by Palestinian MOH the results indicated that (69.7%) of women were anemic. Out of the total, (1%) was diagnosed of level (<8 gm/dl), and (26.3%) of level,