Safety of Methotrexate in Patients with Rheumatoid Arthritis and HCV

Thesis

Submitted for partial fulfillment of the Master Degree in Rheumatology and Rehabilitation

By:

Rehab Mohamed Raafat Abdin

(M.B.B.CH)

Supervisors:

Prof. Dr. Ayman Kamal El-Garf

Professor of Rheumatology and Rehabilitation

Faculty of Medicine

Cairo University

Dr. Ahmed Fouad Soliman

Assistant Professor of Tropical Medicine

Faculty of Medicine

Cairo University

Dr. Abeer Mohamed Nabil

Lecturer of Rheumatology and Rehabilitation

Faculty of Medicine

Cairo University

Faculty of Medicine

Cairo University

2010

Acknowledgements

I would like to express my gratitude and thankfulness; first to Allah for giving me the will, strength, and patience to fulfill this work, then to my mother, father, and my husband for their support and encouragement.

I would like to express my deepest appreciation to **Professor Doctor Ayman Kamal El-Garf**, Professor of Rheumatology and Rehabilitation, Cairo University, for his keen interest in the progress of this work, and for his continuous guidance. He was very generous in providing me with his expert knowledge.

Special thanks to **Dr. Ahmed Fouad Soliman**, Assistant Professor of Tropical Medicine, Cairo University, for his help in obtaining the liver biopsies. He was also very kind in providing me with scientific materials.

Sincere thanks to Dr. Abeer Mohamed Nabil, Lecturer of Rheumatology and Rehabilitation, Cairo University, for her great patience and support throughout the work. She provided me with much needed support and was patient in reading and revising the manuscripts, and her ideas were highly valuable to this work.

I would also like to thank **Dr. Hani Khattab**, Professor of Pathology, Cairo University, for his help in interpreting the liver biopsies.

Last but not least, I would like to thank all my friends and colleagues for their assistance and encouragement.

Abstract

This work aimed to study the safety and efficacy of methotrexate among Egyptian RA patients with concomitant HCV infection.

Twenty four patients fulfilling the 1988 ACR revised classification criteria for RA were included. Eight of the patients also had concomitant HCV. All the patients were subjected to full history taking, clinical examination, laboratory investigations as well as plain radiograph of hands. Baseline liver biopsy was taken from RA patients with HCV. All patients were then followed up for a 6 month period as regards clinical and laboratory manifestations.

No statistical difference was found regarding liver function tests of patients at baseline visit compared to last visit during the study. Also, none of the patients with HCV showed marked liver fibrosis on liver biopsy.

Key words: Rheumatoid Arthritis – Hepatitis C virus - Methotrexate

Table of Contents

	page
List of abbreviations	i
List of figures	iv
List of tables	V
Introduction	1
Aim of the work	3
Review of literature:	
• Chapter 1: Methotrexate	4
Introduction	4
Pharmacokinetics	5
Mechanism of Action in RA	8
Side effects	16
• Chapter 2: HCV	28
Epidemiology	28
Clinical Manifestations	33
Investigations	49
• Chapter 3: The use of non-biologic and biologic DMARDs in	57
rheumatic manifestations of HCV	
MTX and HCV	57
Cyclosporin and HCV	58
Anti-TNF and HCV	60
Rituximab and HCV	62
Patients and methods	64

Results	75
Discussion	91
Summary and conclusions	99
Recommendations	101
References	102
Arabic summary	135

List of Abbreviations

ACR	American College of Rheumatology
ADP	Adenosine diphosphate
AICAR	Aminoimidazole-carboxamide ribonucleotide
ALT	alanine transaminase
AMP	Adenosine monophosphate
AMPDA	Adenosine monophosphate deaminase
Anti-CCP	anti-cyclic citrullinated protien
AST	aspartate transaminase
ATP	Adenosine triphosphate
BRM	biologic response modifiers
СВС	Complete blood count
CsA	cyclosporin
DAMPA	di-amino-methylpteroic acid
DAS	Disease activity score
DHFR	dihydrofolate reductase
DMARD	disease modifying anti-rheumatic drug
EHM	extrahepatic manifestations
EIA	enzyme immunoassay
ESR	erythrocyte sedimentation rate
EULAR	European League Against Rheumatism
GGT	gamma glutamyl transferase
GI	Gastero-intestinal
HBV	Hepatitis B virus
НСС	Hepatocellular carcinoma
HCV	Hepatitis C virus

HIV	Human immunedeficiency virus
IFN	Interferon
IL	interleukin
IM	Intramuscular
INR	International normalized ratio
IPF	Interstitial pulmonary fibrosis
IV	Intravenous
LFT	Liver function test
LPD	Lymphoproliferative disorder
МС	Mixed cryoglobulinemia
МСР	Metacarpophalangeal
MTP	Metatarsophalangeal
MTX	Methotrexate
MTXglu	Methotrexate polyglutamate
NHL	Non-Hodgkin's lymphoma
NSAIDS	Non-steroidal anti-inflammatory drugs
PAT	Parenteral anti-schistosomal therapy
PC	Prothrombin concentration
PCR	Polymerase chain reaction
PEG-IFN	Pegylated interferon
PIP	Proximal interphalangeal
РТ	Prothrombin time
RA	Rheumatoid arthritis
RF	Rheumatoid factor
RFC	Reduced folate carrier
RNA	Ribonucleic acid

SC	Subdutaneous
TB	tuberculosis
THF	Tetrahydrofolate
TMA	Transcription mediated amplification
TNF	Tumor necrosis factor
TS	Thymidylate synthase

List of Figures

		Page
Figure 1	Chemical structure of methotrexate	4
Figure 2	MTX vial	4
Figure 3	Method of folate antagonism of methotrexate	10
Figure 4	The metabolic effects of methotrexate	15
Figure 5	Global HCV prevalence	29
Figure 6	Prevalence of HCV according to age groups in Egypt	29
Figure 7	Schematic presentation of EHM of HCV	40
Figure 8	METAVIR score	56
Figure 9	Clinical manifestations of cases and controls	77
Figure 10	LFTs of cases and control at baseline visit	79
Figure 11	Liver biopsy of case #1	82
Figure 12	Liver biopsy of case #4	82
Figure 13	Liver biopsy of case #6	82
Figure 14	LFTs of cases and control at first follow up visit	86
Figure 15	LFTs of cases and controls at 2 nd follow up visit	88
Figure 16	LFTs of cases and controls at 3 rd follow up visit	89
Figure 17	Comparison between LFTs of first and last visits of cases and controls	90

List of Tables

		Page
Table 1	Folate use in RA patients taking MTX	12
Table 2	Recommendations for monitoring hepatotoxicity in	23
	RA patients taking MTX	
Table 3	Modified Roengik classification for hepatic injury	24
Table 4	Child-Pugh classification for chronic liver disease	27
Table 5	World-wide distribution of HCV genotypes	32
Table 6	Commonly used liver fibrosis scores	55
Table 7	Demographic characteristics of all patients	75
Table 8	Comparison between cases and control regarding	76
	demographic data	
Table 9	Clinical characteristics of cases and controls	76
Table 10	RF and anti-CCP of cases and controls	77
Table 11	PCR values of cases	78
Table 12	Laboratory values of cases and controls at baseline	79
	visit	
Table 13	X-ray findings of cases and controls	80
Table 14	Abdominal ultrasound findings of cases	81
Table 15	Baseline liver biopsy findings in cases	83
Table 16	Methotrexate doses in cases and controls	84
Table 17	Patients receiving steroids	84
Table 18	Patients on anti-malarials	85
Table 19	Clinical features at first follow up visit	85

Table 20	Laboratory findings at first follow up visit	86
Table 21	Clinical features at 2 nd follow up visit	87
Table 22	Laboratory findings at 2 nd follow up visit	87
Table 23	Clinical features at 3 rd follow up visit	88
Table 24	Laboratory features at 3 rd follow up visit	89
Table 25	Comparison of first and last visits regarding clinical	90
	and laboratory data of cases and controls	

Introduction

Rheumatoid arthritis (RA) is the second most common form of chronic arthritis and affects approximately 1% of the adult population worldwide (*O'Dell*, 2007).

Hepatitis C is a major global health problem. Egypt has the highest prevalence worldwide and hepatitis C is the most common etiology of chronic liver disease in Egypt (*Strickland et al., 2002*). The overall HCV antibody positivity in Egypt is 14.7% nationwide and 9.8% of Egyptians are chronically infected (*El-Zanaty and Way, 2009*).

Methotrexate (MTX), a folic acid antagonist, is the most widely used disease modifying anti-rheumatic drug (DMARD) in the treatment of RA, with the best efficacy/toxicity ratio. The major concern of its long term use is hepatotoxicity (*Richard et al., 2000*). Hepatic damage related to methotrexate includes elevation of aminotransferases, portal fibrosis and cirrhosis (*Diouf et al., 2001*).

The prevalence of concurrent rheumatoid arthritis and hepatitis C virus infection is probably underestimated because of the increasing spread of the virus worldwide (*Parke and Reveille, 2004*). Chronic HCV in the setting of RA is an obstacle to treatment due to the complications associated with immunosuppression as well as the potential hepatotoxicity documented with DMARDs conventionally used to treat RA (*Ferri et al., 2007*). For this reason, most rheumatologists refrain from the use of methotrexate in this setting.

Despite hepatotoxicity being an important, though uncommon, complication of long term MTX therapy, little is known about the safety of MTX in patients

Introduction

with concomitant hepatitis C (*Kujawska et al., 2003*). Although studies have been performed on other therapeutic agents such as cyclosporine, anti-TNF, and rituximab for HCV affected patients, studies would be useful to prove that MTX can still be considered a treatment option in this setting. This is especially true in a country like Egypt, where the high prevalence of HCV among patients of lower economic standards makes these alternatives highly unattainable.

Aim of the Work

The aim of the study is to assess the short-term safety and efficacy of the use of methotrexate in patients with rheumatoid arthritis and concomitant HCV infection.

Methotrexate

Introduction:

Methotrexate (MTX) is a folate analogue originally synthesized in the 1940s (*Cutolo et al., 2001*). It was developed as a specific antagonist of folic acid and was shown to inhibit proliferation of malignant cells. Hence its original use was primarily as a chemotherapeutic agent (*Elewaut, 2004*). MTX has been used extensively for treatment of neoplastic diseases including leukemias and lymphomas.

Figure (1): The chemical structure of methotrexate (wikepidia).

Figure (2): Different MTX vials.