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Abstract 
 

Lithium garnet oxides are highly considered as very promising solid 

electrolyte candidates for all-solid-state lithium ion batteries (SSLiBs). My 

thesis’s goal is to explore new garnet electrolyte materials by tuning the 

substitution in the frame structure. A systematic study on lithium-stuffed garnet-

type Li5+2xLa3Ta2-xMxO12 (M= Sm, Gd; 0 ≤ x ≤ 0.55) has been carried out to 

understand the effect of both Gd, Sm - and Li- content on the structural, electrical, 

physical, chemical and electrochemical properties. The results from Powder X-ray 

diffraction (PXRD) and Scanning Electron Microscopy (SEM) suggested 

structural and morphological transformation as a function of dopant concentration. 

PXRD studies have revealed the cubic garnet-type structure of the materials with 

space group Ia-3d, and also have proved that the lattice parameter increases with 

an increase in Sm, Gd, and Li-content. The AC electrochemical impedance 

spectroscopy (EIS) has shown that the sample with 0.35 doping percent is the best 

Li+ ion conductor, with a conductivity of 2.25 x 10-5 and 8.18x10-5 Scm-1 at room 

temperature for Sm and Gd-doped samples, respectively. 

Evaluation of dielectric properties of Li5+2xLa3Ta2-xMxO12 (M= Sm, Gd; 0 ≤ 

x ≤ 0.55) has been carried out by employing AC EIS method. In addition, the 

dielectric properties were also investigated in the light of electron energy loss 

functions, which showed some surface energy loss function (SELF) and negligible 

volume energy loss function (VELF) for the studied garnets. Surface and volume 

energy loss of a mixed conducting LiCoO2 was also studied for comparison.  
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Furthermore, the long-term stability of the garnet samples was performed on 

aged samples using PXRD, SEM, Raman spectroscopy, Thermogravimetric 

analysis (TGA) and AC impedance spectroscopy. The influence of the 

conventional solid state synthesis method that has been used to prepare Li stuffed 

garnets on the microstructure and porosity of Li6.1La3Ta1.45M0.55O12 (M = Y, Zr, 

Sm, Gd) has also been studied. Moreover, electrochemical stability of 

Li5.65La3Ta1.675Gd0.325O12 electrolyte (as a representative example) with Li anode 

was studied. Total conductivity of 4.86 x10-5 S.cm-1 and 1.6 x10-5 S.cm-1 were 

calculated for Au/Li5.65La3Ta1.675Gd0.325O12/Au and Li/Li5.65La3Ta1.675Gd0.325O12/Li 

symmetrical cells at 25oC, respectively. Cyclic Voltammetry of 

Li5.65La3Ta1.675Gd0.325O12 electrolyte showed that it is electrochemically stable up 

to 5.3 V.  

To sum up, the most interesting findings raised in my thesis can be 

summarized in the following points. Firstly, we successfully prepared two novel 

garnets like structure families with using two different doping (Sm and Gd). The 

obtained results assured the possibility of using them as promising electrolytes in 

commercial Li-ion batteries. Secondly, the optimum composition with highest 

conductivity in both families is 0.35 doping percent. Thirdly, 0.55 doping 

composition in both families revealed naturally high porosity level which suggests 

the possibility of using them as new separators in Li ion batteries. Finally, the 

studied samples showed good electrochemical stability, air and CO2 stability as 

comparing with literature. 
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