

Improvement and Scaling Up of Rhamnolipid Production by a *Pseudomonas aeruginosa* Isolate

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

PhD degree

In

Pharmaceutical Sciences (Microbiology and Immunology)

By

Ghadir Saeed Mohammed EL-Housseiny

Master of Pharmaceutical Sciences, Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, 2009

2016

Improvement and Scaling Up of Rhamnolipid Production by a *Pseudomonas aeruginosa* Isolate

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

PhD degree

In

Pharmaceutical Sciences

(Microbiology and Immunology)

By

Ghadir Saeed Mohammed EL-Housseiny

Master of Pharmaceutical Sciences, Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, 2009

Under Supervision of

Prof. Dr. Nadia A. El-Haleem Hassouna

Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mohammad Mabrouk Aboulwafa

Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University

Ass. Prof. Khaled Mohamed Anwar Aboshanab

Assistant Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

2016

Acknowledgements

First, I would like to thank **Prof. Dr. Nadia Hassouna**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for her sincere support, valuable advice and continuous guidance throughout the work.

I am deeply grateful to **Prof. Dr. Mohammed Mabrook Aboulwafa**, Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for choosing this topic, scientific supervision and thorough revision of this thesis.

I am greatly indebted to Assis. Prof. Khaled Anwar Aboshanab, assistant Professor of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University for his constant effort, encouragement and follow up throughout this work.

A special thanks goes to Assis. Prof. Rania Hathoot, assistant Professor of Pharmaceutics, Faculty of Pharmacy, Ain Shams University for her help in the Design Expert and Graph Pad Prism softwares.

I would also like to thank all my colleagues and all workers in the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for their help and support.

I cannot end without thanking my **family** for their endless love and encouragement which helped me to concentrate on my study.

والحمد لله رب العالمين.....

Ghadir Saeed El-Housseiny

Table of Contents

ТАВ	LE OF CONTENTS	i
LIST	TOF ABBREVIATIONS	xi
LIST	LIST OF FIGURES	
LIST	LIST OF TABLES	
ABS	TRACT	1
INT	RODUCTION	3
LITI	ERATURE REVIEW	5
1. Bi	iosurfactants	5
2. C	hemical structure of RLs	6
3. Pı	coperties of RLs	8
4. Pl	nysiological functions of RLs for the producing organisms	9
4.1	Uptake of hydrophobic substrates	9
4.2	Antimicrobial activity	10
4.3	Immune modulation and virulence	10
4.4	Swarming	11
4.5	Biofilm development	11
5. Bi	osynthesis and regulation of RL production	12
5.1	Biosynthesis of RLs	12
5.1.1	Biosynthesis of the Sugar Moiety of RLs	12
5.1.2	Biosynthesis of the Lipid Moiety of RLs	13
5.1.3	Last Enzymatic Reactions in RLs Biosynthesis	14
5.2	Regulation of RL Biosynthesis	15
5.2.1	Regulation of RL Production by Genetic Factors	15

5.2.2	Regulation of RL Production by Environmental Factors	18
6. D	etection and quantification of RLs	18
6.1	Qualitative Methods	19
6.2	Quantitative Methods	20
6.2.1	Spectrophotometric Methods	20
6.2.2	Chromatographic Methods	20
7. Po	otential Applications of RLs	22
7.1	Cosmetic industry	22
7.2	Bioremediation	23
7.3	Food Process Engineering	24
7.4	Household and Cleaning Applications	25
7.5	Pharmaceuticals	26
7.6	Agriculture	26
7.7	Microbial enhanced oil recovery (MEOR)	27
8. Fa	actors affecting RL production	27
8.1	Nutritional factors	27
8.1.1	Carbon Source	28
8.1.2	Nitrogen, Minerals, and Iron Sources	28
8.2	Environmental factors	29
9. R	L production by Fermentation	30
9.1 Fe	ermentation strategies	30
9.1.1	Batch and fed batch fermentation	31
9.1.2	Resting Cells fermentation	32
9.1.3	Semicontinuous fermentation	32
9.1.4	Continuous fermentation	33

9.1.5 Solid State fermentation	33
9.2 Kinetics of the RL production process	34
10. Recovery and purification of RLs	36
10.1 Batch-wise separation of RLs from culture broth	37
10.1.1 Precipitation	37
10.1.2 Solvent extraction	37
10.1.3 Selective crystallization	37
10.2 Continuous separation of RLs from culture broth	38
10.2.1 Adsorption	38
10.2.2 Ion exchange	38
10.2.3 Membrane filtration	39
10.2.4 Foam fractionation	39
10.2.5 Chromatographic separation of RL mixtures	39
10.2.5.1 Preparative thin-layer chromatography	40
10.2.5.2 Normal phase column chromatography	40
10.2.5.3 Reversed phase column chromatography	40
11. Strategies towards commercial production of RLs	41
11.1 Optimizing the producer microorganism	42
11.1.1 Alternative strains for RL production	42
11.1.2 Engineering next-generation RL producing strains	42
11.2 Optimizing the fermentation medium	44
11.3 Optimizing the fermentation process	45
11.3.1 Process optimization: the best combination of essential factors	45
11.3.2 Downstream processing: fast, efficient and cheap product recovery	46

MATERIALS AND METHODS		47
1. B	acterial isolates	47
2. C	hemicals	47
3. M	ledia	48
3.1	Readymade media	48
3.2	Mineral Salts Medium (MSM)	48
3.3	Soybean oil Mineral Salts Medium (SMSM)	49
3.4	Siegmund Wagner (SW) Agar	50
3.5	Glycerol stock medium	50
3.6	Media for SSF	50
4. R	eagents, buffers and solutions	51
4.1	Orcinol reagent	51
4.2	HCl solution	51
4.3	NaHCO ₃ solution	51
4.4	NaOH solution	51
5. C	ollection of soil samples	51
Pseudomonas isolates		52
	creening of the recovered <i>Pseudomonas</i> isolates for RL coduction	53
7 .1	Primary screening using SW agar	53
7.2	Secondary screening using liquid media	53
8. Id	lentification of the selected <i>Pseudomonas</i> isolate P6	54
8.1	DNA sequencing of 16S rRNA	54
8.2	Sequence analysis	54
9. B	acterial culture for RL production in shake flasks	54

9.1	Determination of bacterial count		
9.2	9.2 Seed culture preparation		
9.3	Production conditions	55	
	ndying the factors affecting RL production by <i>Pseudomonas</i> late P6 using SLF in shake flasks	56	
10.1	Batch culture	56	
10.1.1	Time course of growth and RL production in MSM	56	
10.1.2	Effect of different media components	56	
10.1.2	Effect of replacement of glucose in MSM with other carbon sources and testing the production in MSM and SMSM at different concentrations of two selected carbon	56	
10.1.2	sources.	50	
10.1.2	2 RL production in MSM and SMSM with dual carbon sources	56	
10.1.2.3 Effect of different concentrations of NaNO ₃ and different C/N ratios		57	
10.1.3	Effect of different environmental fermentation conditions	58	
10.1.3	1 Response surface methodology (RSM) for the optimization of RL production	58	
10.1.3	2 Experimental verification test for RSM results	58	
10.2 Fed batch culture 6		60	
11. Im	provement of RL production of <i>Pseudomonas</i> isolate P6 by		
mu	itation	61	
11.1	1.1 Treatment with UV		
11.2	.2 Treatment with gamma radiation		
11.3	11.3Screening of the selected colonies for their RL production62		
12. Studying the RL production using SLF in a laboratory fermentor62			
12.1	1 Production by the parent <i>Pseudomonas</i> isolate P6		

12.1.1	Preparation of seed culture	63
12.1.2	Fermentation processes	63
12.1.2.1	Batch fermentation	63
12.1.2.1.1	Studying the time course of RL production	64
12.1.2.1.2	Effect of inoculum size	64
12.1.2.1.3	Effect of aeration rate	64
12.1.2.1.4	Effect of pH	64
12.1.2.1.5	Effect of agitation rate	64
12.1.2.2	Fed batch fermentation	65
12.1.2.3	Semicontinuous fermentation	65
12.2 Pr	oduction by the Pseudomonas mutant 15GR	65
12.2.1	Preparation of seed culture	65
12.2.2	Fermentation processes	65
12.2.2.1	Batch fermentation	65
12.2.2.2	Fed batch fermentation	66
12.2.2.3	Semicontinuous fermentation	66
12.3 Ki	netics of the fermentation process	66
12.3.1	Determination of fermentation parameters	66
12.3.2	Fermentation kinetics models	67
13. Study	ing the RL production by <i>Pseudomonas</i> mutant 15GR using	(0)
solid s	state fermentation (SSF)	69
13.1 Pr	oduction of RL by SSF using different solid substrates	69
13.2 Ex	traction and quantification of RLs	70
	adying the factors affecting RL production by Pseudomonas	-
mı	itant 15GR using SSF	71

13.3.1 Studying the time course of RL production in SSF using the		
selected substrate and comparing it to the production in SLF	71	
13.3.2 Effect of using variable concentrations of glycerol in		
impregnating solution	71	
13.3.3 Effect of some fermentation conditions on RL production	72	
13.3.3.1 Response surface methodology (RSM) for the optimization of		
RL production in SSF		
13.3.3.2Experimental verification test for RSM results	73	
13.4 Studying the time course of RL production by Pseudomonas		
mutant 15GR using optimized SSF conditions	73	
14. Analytical methods	73	
14.1 Determination of biomass	74	
14.2 Colorimetric determination of RL concentration	75	
14.2.1 Sample preparation	75	
14.2.2 Orcinol assay	75	
14.3 Determination of residual glycerol concentration	76	
14.4Determination of residual nitrate concentration77		
15. Statistical and graphical analysis	78	
RESULTS	79	
1. Recovery and preliminary identification of <i>Pseudomonas</i> isolates		
from soil samples	79	
2. Screening of the recovered Pseudomonas isolates for RL		
production	79	
2.1 Primary screening using SW agar	79	
2.2 Secondary screening using liquid media	81	
3. Identification of the selected <i>Pseudomonas</i> isolate P6	81	
4. Factors affecting RL production by <i>P. aeruginosa</i> isolate P6 using		
SLF in shake flasks	81	

4.1 Ba	tch culture	81
4.1.1	Time course of growth and RL production in MSM	81
4.1.2	Effect of different media components	82
4.1.2.1	RL production in MSM with different carbon sources and in SMSM	82
4.1.2.2	Effect of variable concentrations of the selected carbon sources	84
4.1.2.3	RL production in optimized GMSM and SMSM with dual carbon sources	85
4.1.2.4	Effect of different concentrations of NaNO ₃ and different C/N ratios	85
4.1.3	Effect of different environmental fermentation conditions	87
4.1.3.1	RSM for the optimization of RL production	87
4.1.3.2	Model diagnostics	97
4.1.3.3	Experimental verification test for RSM results	104
4.2 Fe	d batch culture	104
4.2.1	Feeding with C source (glycerol)	105
4.2.2	Feeding with N source (sodium nitrate)	107
4.2.3	Feeding with dual substrate (glycerol and sodium nitrate)	109
5. Impro	ovement of RL production of P. aeruginosa isolate P6 by	110
mutat		112
6. RL pr	oduction using SLF in a laboratory fermentor	116
6.1 Pr	oduction by the parent P. aeruginosa isolate P6	116
6.1.1	Batch fermentation	116
6.1.1.1	Time course of RL production	116
6.1.1.2	RL production using different inoculum sizes	118
6.1.1.3	RL production using different aeration rates	121

6.1.1.4 RL production using different pH	123
6.1.1.5 RL production using different agitation rat	tes 126
6.1.2 Fed batch fermentation	129
6.1.3 Semicontinuous fermentation	132
6.2 Production by <i>P. aeruginosa</i> mutant 15GR	135
6.2.1 Batch fermentation	135
6.2.2 Fed batch fermentation	137
6.2.3 Semicontinuous fermentation	138
6.3 Kinetics of the fermentation process	140
6.3.1 Determination of fermentation parameters	140
6.3.2 Fermentation kinetics models	142
7. RL production by <i>P. aeruginosa</i> mutant 15GR usi	ng SSF 147
7.1 Production of RL by SSF using different solid sub	ostrates 147
7.2 Studied factors affecting RL production by mut	e
SSF	148
7.2.1 Time course of RL production in SSF using t	
substrate mixture and in SLF	148
7.2.2 Effect of variable concentrations of glycerol	in impregnating 149
solution	149
7.2.3 Effect of some fermentation conditions on RL	production 150
7.2.3.1 Response surface methodology (R	SM) for the
optimization of RL production in SSF	150
7.2.3.2Model diagnostics	154
7.2.3.3Experimental verification test for RSM res	sults 156
7.3 Time course of RL production by <i>P. aeruginos</i>	sa isolate 15GR
using optimized SSF conditions	156

DISCUSSION	157
SUMMARY	190
REFERENCES	195
APPENDIX	233

List of Abbreviations

Adeq precision	Adequate precision
Adj R ²	Adjusted R ²
ANOVA	Analysis of variance
BBD	Box behnken design
BLAST	Basic Local Alignment Search Tool
cfs	Cell free supernatant
cfu	Colony forming units
СМС	Critical micellar concentration
C/N ratio	Carbon/ nitrogen ratio
СТАВ	Cetyltrimethylammonium bromide
C- source	Carbon source
CV	Coefficient of variation
3D	Three dimensional
DO%	Dissolved oxygen %
ECH/I	Enoyl-CoA hydratases/isomerases
EDTA	Ethylene diamine tetra acetic acid
FAS	Fatty acid synthesis
GC	Gas chromatography
GMSM	Glycerol-mineral salts medium
Gy	Gray
HAQ	4-hydroxy-2-alkylquinolones
HLB	Hydrophilic lipophilic balance
HPLC	High performance liquid chromatography
HSL	Homoserine lactone
IDS	Initial dry solids
IS	Impregnating solution
ISPR	In situ product removal
LB	Luria Bertani
LC	Liquid chromatography

MEOR	Microbial enhanced oil recovery
MS	Mass spectrometry
MSM	Mineral salts medium
N- source	Nitrogen source
OD	Optical density
PQS	Pseudomonas quinolone signal
Pred R ²	Predicted R ²
QS	Quorum sensing
RI	Refractive index
RL	Rhamnolipid
rpm	Revolutions per minute
rRNA	Ribosomal ribonucleic acid
RSM	Response surface methodology
RTD	Resistance temperature detector
SMSM	Soybean oil-mineral salts medium
SLF	Submerged liquid fermentation
SSF	Solid state fermentation
SW agar	Siegmund Wagner agar
TLC	Thin layer chromatography
TSB	Trypticase soy broth
UV	Ultraviolet
v/v	Volume per volume
WAC	Wood activated charcoal