

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT

Nanometer Layout Effects on Analog Front End Circuit Design

A Thesis

A thesis submitted in partial fulfillment for the requirement of the degree of Master of Science in Electrical Engineering Electronics and Communication Engineering

Submitted by

Eng. Mohannad Elemam Elshawy B.Sc. of Electrical Engineering Electronics and Communication Engineering Ain Shams University, 2015

Supervised by

Prof. Mohamed Amin Dessouky Dr.Mohamed Ahmed Elsheikh Mohamed Dr.Mohamed AbdElhamid AboEl-Atta

Cairo 2015

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT

Examiners Committee

Name: Mohannad Elemam Elshawy

Thesis : Nanometer Layout Effects On Analog Front End Circuit Design

Degree: Master of Science in Electrical Engineering Electronics and Communication Engineering

Name, Title and Affiliation	Signature
Prof. Elsayed Mostafa Sad Electronics and Communication Eng. Dept. Faculty of Engineering-Helwan University	
Prof. Hani Fekry Ragai Electronics and Communication Eng. Dept. Faculty of Engineering-Ain Shams University	
Prof. Mohamed Amin Dessouky Electronics and Communication Eng. Dept. Faculty of Engineering-Ain Shams University	

Curriculum Vitae

Name of the Researcher	Mohannad Elemam Elshawy
Date of Birth	25 th of January 1988
Place of Birth	Cairo, Egypt
First University Degree	B.Sc in Electrical Engineering, Electronics and Communication Department, Shoubra, Benha University
Date of Degree	June 2009

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the department of electronics and communication engineering, Ain Shams University.

No part of this Thesis has been submitted for a degree or a qualification at any other university or institute.

Name : Mohannad Elemam Elshawy Signature : Date :

To My Parents, Sister and Brother

I present to you this thesis to express my deep gratitude and love

Thanks

Nanometer Layout Effects on Analog Front End Circuit Designl

Mohannad Elemam Elshawy

Supervised by

ABSTR ACT

During the past few years, the concept of integrating multiple applications into a single System-on-Chip (SOC) has occupied a huge segment in the market of integrated circuits. The recent development in this area has led to an increase in the number of Analog/Mixed signal (AMS) components and the functionality that can be integrated per chip. In the digital design flow, the design procedure is captured and the level of automation has been performed easily. On the other counterpart, the AMS design flow suffers from a lack of automation and requires a manual interaction from designer throughout all the design process. Moreover, the design challenges in the advanced nodes beyond 90 nm becomes more significant and tedious for any analog designer. It would be desirable to automate part of the analog design flow (back-end phase) using layout generators to minimize the gap between the front end and back end phases as the layout dependent effects (LDEs) become more significant and tedious for the analog designer in the recent nanometer technology beyond 90 nm.

This work addresses a new analog design methodology that mitigates layout dependent effects (LDEs) on analog circuits. The proposed methodology offers a solution for these effects by minimizing the gap between the electrical and physical design. A layout generator tool is developed and used within the proposed flow. The layout generator tool is parameterized to generate the layout of basic analog building blocks such as Differential Pair and Current Mirror circuits after sizing these circuits in the front end phase by circuit designer. In order to validate the importance of the proposed design methodology, a two stage Miller OTA and a current steering digital to analog converted (DAC) are designed using the proposed methodology and presented as a case study. All the circuits are designed in 28nm technology and the LDE extraction is done by Calibre-LVS tool to guarantee the accuracy of the extracted data. The developed layout generator tool is used in the design process in order to show the main usage of this tool within the proposed design methodology.

Keywords: Analog Layout Synthesis, Layout Generation, Analog Design, Layout Dependent Effects, CAD

ACKNOWLEDGMENT

All gratitude to ALLAH

First of all, I would like to thank Allah for giving mestrength and ability to do and finish my master thesis.

I would like to thanks my supervisors Prof. Dr.Mohamed Dessouky, Dr.Mohamed Elsheikh and Dr.Mohamed El-Atta. I have been really fortunate to have the opportunity to work under their supervision.

I am deeply indebted to Prof Dr. Mohamed Dessouky for his continuous support of my Master study and related research, for his patience, motivation and deep knowledge. His guidance and assistance throughout this work helped me in all the time. Under his supervision I successfully overcame many difficulties and learned a lot. I am thankful for all he taught me.

During the hard times, I was losing the drive and energy to continue. So, I would like to present a special thanks to Prof. Dr. Hani Fekry, Dr.Mohamed Elshiekh, Eng. Amin Maher, Dr. Sherif Saif and Eng. Ahmed Kassam for encouragement and support. They gave me special advices and energy to finish this work.

Also, I would like to thank, by particularly, Dr. Sherif Saif, the engineering manager of CICD team previously and Eng. Ahmed Ramadan, Senior Product Manager at Mentor Graphics for their support and encouragement by providing facilities and all required tools that helped me to accomplish this work.

Many Thanks go to my colleagues and friends for their support and help during my work. Special thanks to all CICD Cairo team members. I would like to record my thank to the research colleagues Eng. Khaled Elkenawy, Eng. Inas Mohamed and Eng. Islam Nashaat for their great in deep technical discussions about problems related to this work.

Last but no least, I would like to thanks all of my family members for their great patience and care. I am really fortunate to have such a family, my mother (Mrs.Fatma), my father (Mr.Elemam), my brother (Dr.Mohamed) and my sister (Eng.Marwa). I would like to thank them all for their sincere encouragement and prayers.

Contents

List	t of F	igures	IX
List	t of T	ables	XI
List	t of A	bbreviations	XI
List	t of S	Symbols	XII
1	Intro	oduction	1
	1.1	Motiviations and Problem Defination	1
	1.2	Main Contribution	3
	1.3	Dissertation Organization	4
2	Anal	og Layout Aware Synthesis	5
	2.1		5
	2.2	Analog Design Automation	6
		2.2.1 Matching Problem	7
		2.2.2 Stress Effects	9
		2.2.3 Process Variation Effects	9
	2.3	Analog Design Automation Goals	10
		2.3.1 Decreasing Design Time	10
		2.3.2 Technology Porting	11
		2.3.3 Reduce Cost	12
		2.3.4 Increase Reliability and Performance	13
	2.4	Automatic Layout Generation Challenges	14
		2.4.1 Concrete Library for Basic Analog Blocks	14
		2.4.2 The Gap between Electrical and Physical Design	16
		2.4.3 Support Different Placement Techniques	18

	2.5	2.4.4 Physica 2.5.1 2.5.2 Layout	New Des al Layout In Layout D Design Au 2.5.2.1 2.5.2.2 aware syr	ign Rules	19 19 20 21 21 24 25
		2.6.1 2.6.2	Layout av Commerc	ware synthesis approaches	26 27
3	Itera	tion De	sign Metho	odology for Nanometer Analog Circuits	30
	3.1	Analog	Desigin F	low	30
		3.1.1 3.1.2	Convention Incremen	onal Analog Design Flow	30
			mation	<u> </u>	33
	3.2	Layout	Generato		35
		3.2.1		attern Concretor	35
		3.2.2			30 70
		0.2.0	3231	Internal Placer Engine	40 40
			3.2.3.2	Internal Router Engine	41
	3.3	Results	S	· · · · · · · · · · · · · · · · · · ·	42
٨	Casa	Studios	and Simu	lation Bosults	15
4		2-Stag			43 75
	4.1	2-5tay	Procedural	Design Sequence for Miller OTA	45 45
		4.1.2	OTA Desi	an Parameters	46
		4.1.3	OTA Des	an Procedure with LDE Effects	49
		4.1.4	Simulatio	n Results	49
			4.1.4.1	Miller OTA Schematic Circuit Perfor-	
				mance	49
			4.1.4.2	Circuit Performance with Differential pair (M1,M2) LDEs	49
			4.1.4.3	Circuit Performance with Mirror Load (M3,M4) LDEs	51
			4.1.4.4	Circuit Performance with Current Mir- rors (M4,M5,M7) LDEs	52

			4.1.4.5	Circuit Performance with Second Stage	
				LDEs (M8)	53
			4.1.4.6	LDE Effects on Systematic Offset	54
			4.1.4.7	Full Layout for Two-Stage Miller OTA	54
	4.2	Currer	nt Steering	Digital to Analog Converter	57
		4.2.1	DAC Arc	hitectures	57
		4.2.2	Practical	Design Considerations	58
			4.2.2.1	Current Source Accuracy	59
			4.2.2.2	Current Source Output Impedance	60
		4.2.3	DAC Sta	tic Performance Testbench	60
		4.2.4	Design C	Current Steering DAC using Proposed Metho	od-
			ology .		62
			4.2.4.1	Circuit Partioning	62
			4.2.4.2	Design Procedure with LDE effects .	63
			4.2.4.3	Full Layout Simulation Results	67
5	Con	clusion	and Futur	e Work	70
	5.1	Future	Work		70
6	Pub	licatior	າຣ		72
Re	feren	ces			73

List of Figures

1.1	Simplified Design Flow. (a) Digital Design Flow (b) Ana- log Mixed Signal Design Flow flow	2
2.1	Schematic of folding technique: a) Common transistor, b) Folded transistor	7
2.2	Layout of folding technique	8
2.3	Layout effects on multi-finger devices[8]	8
2.4	Shallow Trench Isolation	9
2.5	Contact Shift and process variation	10
2.6	Simplified Design Flow for Analog and Digital Circuits	11
2.7	Automatic Technology Porting and Change design target	
	using Automatic Layout Generation tool	13
2.8	An Integrated Layout synthesis methodology for Analog	
	IC [5]	14
2.9	Library for building block recognition of analog, mixed-	
	signal and digital circuits.[11]	15
2.10	Traditional versus layout-aware circuit sizing flow[20] .	17
2.11	Different Placement constraints	18
2.12	Layout Dependent Effects on voltages threshold[51]	20
2.13	LDE effect in 28nm Technology	20
2.14	Layout-aware sizing with AIDA[50]	27
3.1	Convential Analog Design Flow	31
3.2	Circuit Designer problem with LDE through the Conven-	
0.2	tional Analog Flow	32
3.3	Proposed Analog Design Methodology for Technologies	
	bevond 65 nm	33
3.4	Layout Generator tool Architecture	35
		-

3.5	Basic Building Blocks	36
3.6	MOS Array Generation from Layout Generator Tool	37
3.7	Layout Pattern generator module	38
3.8	Different interdigitated configurations for two devices (A	
	and B)	39
3.9	Layout for Abutted and separate devices (M1&M2), (M3&M4)
	are abutted. (M1, M2) & (M3, M4) are separated	40
3.10	Different routing styles controlled by designer to mini-	
0 4 4	mize routing effects on circuit performance	41
3.11	Differential pair schematic view with three different lay-	10
	outs with different placement techniques	43
4.1	Two stage Miller OTA schematic	46
4.2	Illustration of dominant, non-dominant pole, gain band-	
	width frequency and phase margin for the amplifier in	
	open unity-gain feedback loop	48
4.3	Systematic Offset TestBench Circuit	48
4.4	Differential pair layout (a) Layout 1 without dummy. (b)	
	Layout 2 with dummy to minimize LDE effects	50
4.5	Different layouts for active load block (M3,M4) genereated	-4
4.0	Dy LG tool	51
4.0	DC Gain degradation due to LDES on Mirror 10ad (1N3 &	۲ 0
47	N(4)	52
4.7	denereated by LG tool	52
48	Different layouts for current sourceblock (M5 M6 M7)	52
4.0	genereated by I G tool	53
4.9	DC Gain for Schematic, Lavout 4.10, a and Lavout 4.10, b	55
4.10	Full Circuit Layout using the best layouts generated by	
	layout generator tool. (a) The differential pair circuit with-	
	out upper and lower dummy row and current source placed	
	in 3 rows. (b) Differential pair is surrounded by dummy	
	ring and current source are placed into rows	56
4.11	Current Steering DAC architecture	57
4.12	Current Source cells (a) Single Current Source (b) Cas-	
	code Current Source	58
4.13	3-Bit DAC Transfer Function	61

4.14	Unit Current Cell dimensions and its subcircuits	63
4.15	Swtich layout	64
4.16	Differential Non Linearity (DNL) for schematic and swtich	
	layout. Number of bits = 7	65
4.17	Cascode Current Mirror Layouts	66
4.18	Differential Non Linearity (DNL) for schematic and Cas-	
	code Current Mirror Layouts. Number of bits = $7 \ldots$	67
4.19	Full layouts for Unit current cell	68
4.20	Differential Non Linearity (DNL) for schematic and Full	
	Layouts. Number of bits = 7	69