

Ain Shams University Faculty of Education Physics Department

Plastic Behavior Due to Ge Precipitation in Al-based Alloys

THESIS

Submitted for the Degree of Master of Philosophy for the Teacher's Preparation in Science (Physics)

By

Jacklein Anwar Fawzy Riad

B. Sc. and Ed. 2007, Gen. Diploma (Physics) 2008, Spec. Diploma (Physics) 2009.

To

Physics Department Faculty of Education Ain Shams University

2013

Approval Sheet

Title: Plastic Behavior Due to Ge Precipitation in Albased Alloys

Candidate: Jacklein Anwar Fawzy Riad

Degree : Degree of Master of Philosophy for Teacher's Preparation in Science (Physics)

Board of Advisors

Approved by

Signature

1. Dr. Mourad Helmy Nagy Beshai

Assistant Professor, Physics Department, Faculty of Education, Ain Shams University.

2. Dr. George Helmy Deaf

Assistant Professor, Physics Department, Faculty of Education, Ain Shams University.

3. Dr. Nihad Daoud Habib

Lecturer, Physics Department, Faculty of Education, Ain Shams University.

Date of presentation 24 / 6 / 2013

Post graduate studies:

Stamp: / / Date of approval: / /

Approval of Faculty Council: / /2013

Approval of University Council: / / 2013

Ain Shams University Faculty of Education Physics Department

Thesis Title:

Plastic Behavior Due to Ge Precipitation in Al-based Alloys

Researcher Name: Jacklein Anwar Fawzy Riad

Submitted to:

Physics Department, Faculty of Education, Ain Shams University

Supervised by:

- 1. Dr. Mourad Helmy Nagy Beshai
- 2. Dr. George Helmy Deaf
- 3. Dr. Nihad Daoud Habib

Acknowledgement

Acknowledgement

I wish to express my deep gratitude to *Prof. Dr. Mostafa Hussein*, Head of Physics Department, Faculty of Education, Ain Shams University for his assistance and encouragement.

The author wishes to express her sincere appreciation for *Prof. Dr. Gamal Saad Awadalla*, Physics Department, Faculty of Education, Ain Shams University for his assistance and encouragement during this work.

The author wishes to express her sincere appreciation for *Asst. Prof. Dr. George Helmy Deaf,* Physics Department, Faculty of Education, Ain Shams University for suggesting this work, for his supervision and advice during the course of this work.

I wish also to express my deep gratitude for *Asst. Prof. Dr. Mourad Helmy Beshai*, Physics Department, Faculty of Education, Ain Shams University, for his valuable help, guidance and support, continuous encouragement and supervision throughout this work.

I would like to thank *Dr. Nihad Daoud Habib,* Physics Department, Faculty of Education, Ain Shams University, for her help, support, advice, fruitful discussions and her persistent interest.

I would like to express my deep thanks to all members of Solid State Physics, Faculty of Education, Ain Shams University for their support during this work.

Contents

	Contents	Page
	List of Figures	a
	List of Tables	g
	List of Equations	h
	Abstract	i
	Summary	j
	Acceptance Letters	
	CHAPTER I	
	Introduction	
1.1.	Lattice Imperfections in Crystalline Solids	1
	Point Defects	1
	Edge Dislocation	2
	Surface/Planar Defects	3
	Volume Defects	4
1.2.	Interactions Between Point Defects	5
1.3.	Elastic Properties of Dislocations	6
1.4.	Dislocation Motion	6
	The Glide Motion	7
	The Climb Motion	7
1.5.	Dislocation Interactions	8
1.6.	Multiplication of Dislocations	9
1.7.	Work-Hardening of Metals and Alloys	10
	Elastic Deformation	10
	Plastic Deformation	10
1.8.	Mechanisms of Work-Hardening	11
	Strain-Hardening	11

		Page
	Solid Solution Strengthening	12
	Grain Boundary Hardening	13
	Grain Size Effect	13
	Anneal Hardening	13
	Precipitation or Dispersion Strengthening	14
1.9.	Nucleation and Growth of Precipitates	18
1.10.	Grain Boundary Sliding	19
1.11.	Superplastic Deformation	21
1.12.	Stress-Strain Characteristics	22
1.13.	Mechanical Properties of Metals and Alloys	27
	Modulus of Elasticity	27
	Yield Strength	28
	Ultimate Tensile Strength	28
	Percent Elongation	29
1.14.	Factors Affecting the Stress-Strain Curve	30
	Effect of Strain Rate	30
	Effect of Temperature	31
	Effect of Grain Size	32
1.15.	Aluminum-Germanium Alloys	34
1.16.	Al-Ge Phase Diagram	36
1.17.	Previous Review	38
	Formation of Pure Ge Precipitate Morphologies	38
	Superplastic Behavior of Al-Ge Alloy	43
	Plastic Deformation on the Precipitation Al-Ge	
	Alloy	47
1.18.	Scope and Outline of the Present Work	51

CHAPTER II

	Experimental Techniques and Devices	Page
2.1.	Samples Preparation	53
2.2.	Heat Treatments	54
2.3.	The Components of the Mechanical System	56
2.3.1.	Tensile-Testing Machine	56
(a)	The Force Sensor	58
(b)	The Rotary Motion Sensor	58
(c)	The Science Workshop 500 Interface	58
(d)	The Software (Data Studio Software)	58
2.4.	Measurement Technique	60
2.5.	X-ray Diffraction (XRD)	62
2.6.	Transmission Electron Microscope (TEM)	63
	CHAPTER III	
	Experimental Results and Observations	
	Below 423 K	
3.1.	Tensile Properties and Microstructure Changes	
	of Al-4wt%Ge and Al-4wt%Ge-0.1%Zr	
	Alloys Aged From 323 K to 423 K	67
3.2.	Effect of Aging Times and/or Temperatures on	
	the Stress-Strain Parameters in Both Alloys	73
3.3.	TEM investigations	80
3.3.1.	Effect of Aging Time	81
3.3.2.	Effect of Aging Temperature	85
3.3.3.	Effect of Zirconium Addition	88

	CHAPTER IV	Page
	Experimental Results and Observations Above 423 K	
4.1.	Tensile Properties of Al – 4 wt. % Ge and Al – 4 wt. % Ge – 0.1 % Zr Alloys Aged From 448 K to 573 K.	93
4.2.	Effect of Both Aging Time and Aging Temperature on the Strength Parameters of	73
	Both Alloys (A & B)	94
4.3.	TEM investigations	106
4.3.1.	Effect of Aging Time	106
4.3.2.	Effect of Aging Temperature	110
4.3.3.	Effect of Zr Addition	113
	Conclusions	116
	References	118
	Arabic Summary	

List of Figures

List of Figures

Figure	Caption	Page
Fig. 1.1	Schematic aging curve.	17
Fig. 1.2	A typical stress-strain curve.	24
Fig. 1.3:	Tensile stress-strain curves for metals.	27
Fig. 1.4:	Al-Ge phase diagram.	37
Fig. 2.1	The temperature uniformity along the axis of the furnace.	54
Fig. 2.2	The calibration curve for the annealing furnace.	55
Fig. 2.3	Schematic diagram of the mechanical system.	57
Fig. 2.4	The force sensor.	59
Fig. 2.5	The rotary motion sensor.	59
Fig. 2.6	The science workshop 500 interface.	60
Fig. 2.7	Stress-strain relationship as obtained by the data studio graph.	61
Fig. 2.8	An automatic electrolytic thinning machine (Tenupole-3).	64
Fig. 2.9	Electron microscope type of a JEOL-100s.	65

Figure	Caption	Page
Fig. 3.1:	The stress-strain curves for both alloys (A & B) aged at: 323, 348 and 373 K, for different aging times as indicated.	69,70
Fig. 3.2:	(Stress) 2 versus strain (σ^2 - ϵ) for specimens of both alloys (A & B) aged at different aging temperatures.	71,72
Fig. 3.3:	Effect of aging time on $(\sigma_{y0.2})$ for specimens of both alloys (A & B) aged at different aging temperatures.	74
Fig. 3.4:	Effect of aging time on $(\sigma_{y0.2})$ for specimens of both alloys (A & B) aged at $T_a = 423$ K. $(\sigma_{y0.2})$ for alloy B are slightly higher than those for alloy A.	74
Fig. 3.5:	Effect of aging time on the parabolic work hardening coefficient χ_p for specimens of both alloys (A & B) aged at different aging temperatures.	76
Fig. 3.6:	Effect of aging time on ultimate stress (σ_u) , for specimens of both alloys $(A \& B)$ aged at different aging temperatures.	76
	temperatures.	/6

Figure	Caption	Page
Fig. 3.7:	Effect of aging time on stress to fracture (σ_f) for specimens of both alloys (A & B) aged at different aging temperatures.	78
Fig. 3.8:	Effect of aging time on Young's modulus (Y) for specimens of both alloys (A & B) aged at different aging temperatures.	78
Fig. 3.9:	Effect of aging time on the strain to fracture percent or the ductility $(\epsilon_f\%)$ for specimens of both alloys (A & B) aged at different aging temperatures.	80
Fig. 3.10:	TEM micrographs of specimens of both alloys (A & B) aged at 423 K for 1 hour (a & c) and 6 hour (b & d) respectively, showing the coalescence of Ge particles as a function of aging time. And, (d) the formation of coffee bean contrast which marked by arrows.	82
Fig. 3.11:	The XRD record for both alloys A&B.	84

Figure	Сарпоп	Page
Fig. 3.12:	TEM micrographs of specimens of both alloys (A & B) aged for 1 hr at 323 K (a & b) and 423 K (c & d) showing irregular and spherical particles of Ge precipitates developed at sub-grain boundaries and inside grains as a function of aging temperatures.	87
Fig. 3.13:	Effect of aging time on the mechanical parameters (σ_u , σ_f , χ_p and Y) for specimens of both alloys (A & B) aged at $T_a = 423$ K.	89
Fig. 3.14:	A montage of TEM micrographs of specimens of both alloys (A & B) aged for 1 hr at 423 K showing: (a) dense irregular Ge precipitates at sub-grain boundaries in alloy A (b) moderate irregular Ge precipitates	0.1
Fig. 4.1 :	at sub-grain boundaries in alloy B. The stress-strain curves for both alloys (A & B) aged at: 448, 473 and 498 K for different aging times as indicated.	91 95,96