PRECISION OF SOME STATISTICAL PROCEDURES IN EVALUATING THE PERFORMANCE OF COTTON GENOTYPES

By

MONA ELSAYED SHALABY ALI SAED

THESIS
Submitted in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

In
Agricultural Sciences
(Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2015
SUPERVISION SHEET

PRECISION OF SOME STATISTICAL PROCEDURES IN EVALUATING THE PERFORMANCE OF COTTON GENOTYPES

Ph. D. Thesis
In
Agricultural Sci. (Agronomy)

By

MONA ELSAYED SHALABY ALI SAED

SUPERVISION COMMITTEE

Dr. DEYAA AHMED EL-KADI
Emeritus Professor of Agronomy, Fac. Agric., Cairo University

Dr. AHMED MEDHAT AL-NAGGAR
Emeritus Professor of Agronomy, Fac. Agric., Cairo University

Dr. MANAL MOSTAFAA SALEM
DEDICATION

To the souls of my mother and father

Thanks
ACKNOWLEDGEMENT

Thanks to Allah, the most merciful and the most beneficial

My words fail to express my utmost gratitude and appreciation to my respectable Dr. Deyaa Ahmed El-Kadi, Emeritus Professor of Biometrics, Agronomy Department, Faculty of Agriculture, Cairo University and chairman of supervisors committee for suggesting the problem, valuable guidance, great help, devoted efforts, continuous encouragement, sincere concern and accurate supervision through all stages of the PhD research and during the preparation of the manuscript.

Sincere thanks and grateful appreciation are extended to Dr. Ahmed Medhat Al-Naggar, Emeritus Professor of plant breeding, Department of Agronomy, Faculty of Agriculture, Cairo University, and member of the supervision committee for his valuable guidance, inspiring help, devoted efforts and sincere concern in supervising this study and during the preparation of this manuscript.

Grateful appreciation and indebtedness are extended to Dr. Manal Mostafa Salem, Head Researcher of the Central Laboratory of Designs and Statistical Analysis, Agricultural Research Center, Giza, Egypt, and member of supervision committee for valuable advice and help during the preparation of this thesis.
Name of Candidate: Mona El-Sayed Shalaby Ali Saed
Degree: Ph.D.
Title of Thesis: Precision of Some Statistical Procedures in Evaluating the Performance of Cotton Genotypes
Supervisions: Dr. Deyaa Ahmed El-Kadi
Dr. Ahmed Medhat Al-Naggar
Dr. Manal Mostafa Salem
Department: Agronomy
Approval: 13/9/2015

<table>
<thead>
<tr>
<th>ABSTRACT</th>
</tr>
</thead>
</table>
| The present investigation was carried out at the Agricultural Experimental and Research station in Faculty of Agriculture, Cairo University, Giza, Egypt during 2008 and 2009 seasons. In the first experiment; twenty five cotton families, lines and cultivars were used. The balanced lattice design (5X5) with six replications was used as a basic design. All recommended agricultural practices were used. The studied traits were seed cotton yield (g/plot), lint cotton yield (g/plot), seed cotton yield per plant (g), lint cotton yield per plant (g), lint percentage and lint index. The studied statistical procedures were traditional designs (randomized complete block design (RCBD), balanced lattice design (6-replications) and partially balanced lattice with 2,3,4 and 5 replications). Also, non-traditional analyses of restricted maximum likelihood (REML) method as ordinary, spatial and meta models were proceeded, for all replication combinations. All combinations from 6 replications were analyzed. i.e., 57 combinations. Relative precision was calculated for each replication combination in each season. The highest one in relative precision for each combination was identified. Non-traditional methods of statistical analyses were applied to the highest précised data sets. In both seasons, certain genotypes either in F₃ or F₆ showed significantly higher for all studied traits than commercial cultivars under study. Based on results obtained, either quintic or balanced lattices could be recommended instead of RCBD. In general, as long as number of replications increase, the precision increases as in quintic and balanced lattices. The results were extended to detect the most précised REML models using four estimated parameters, i.e., residual variance (σ^2), χ^2, deviance (DV) and akaike information criterion deviance (AICD). For all data sets, meta REML model was detected as the best REML model for increasing the precision of cotton field trials compared with ordinary and spatial REML models. Except for 2-replications data set, either replications or replications and blocks alternative sub-models revealed their importance in increasing precision of experiments. Precision of REML models compared with the traditional designs were included in the present study. In both seasons, except for 2-replication data set, highest C.V. values were obtained for RCBD followed by lattice design, ordinary-, spatial- and meta- REML models, respectively. Concerning 6-replication data set, based on the averages of C.V. estimates for the two seasons of study, the lowest C.V. estimates were obtained for meta REML model. The same trend of results was detected for other studied traits. Furthermore, the same trend of results was detected for other data sets. Results showed the effect of adjustment of genotype means for unexplained variability in ranks for selection of the best genotype. The second experiment was conducted to study the optimum boll sample size of random sample for upper half mean length (UHM), length uniformity ratio (%), micronaire reading, fiber strength (g/tex) and fiber elongation (%). Concerning the recommended meta REML model analysis, whole plot sample size was considered the most recommended for all fiber traits with exception of fiber elongation which was 100 bolls. Finally it could be concluded that the meta REML model is recommended for analyses of data for cotton field trials and in studying cotton fiber traits.
Key words: Cotton yield trial, RCBD, Balanced and partially balanced lattice design, Relative precision, REML models, Spatial model, Meta model, C.V., R.D., Fiber properties and Sample size.
INTRODUCTION ... 1

REVIEW OF LITERATURE .. 7
1. Performance of cotton genotypes ... 7
2. Relative precision of different lattice designs compared to randomized complete block design .. 11
3. REML models ... 15
 a. Ordinary REML model .. 15
 b. Spatial REML model .. 18
 c. Meta REML model ... 24
4. Sample size for the fiber properties 26

MATERIALS AND METHODS .. 30
1. Evaluation of the twenty five cotton genotypes for yield traits ... 33
2. Relative precision of balanced and partially balanced lattice designs compared with RCBD .. 34
3. Precision of residual maximum likelihood (REML) models 35
 a. Ordinary REML model .. 35
 b. Spatial REML model .. 36
 c. Meta REML model ... 36
4. Effective sample size for the fiber properties 38

RESULTS AND DISCUSSION .. 39
1. Performance of twenty five cotton genotypes 39
 a. Seed cotton yield (g/plot) and (kentar/feddan) 39
 b. Lint cotton yield (g/plot) and (kentar/feddan) 42
 c. Seed cotton yield and lint cotton yield (g/plant) 45
 d. Lint percentage (L%) and lint index 48
2. Relative precision of balanced and partially balanced lattice designs compared with the RCBD .. 52
3. Precision of REML models .. 59
 a. Detecting the most précised REML models 60
 b. Precision of REML models compared with the traditional methods .. 86
4. Effective sample size for estimating the fiber properties using traditional and untraditional methods 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pedigree of the twenty five cotton genotypes</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Form of combined ANOVA for the randomized complete block design</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Basic format of the analysis of variance for balanced lattice design</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>Basic format of the analysis of variance for partially balanced lattice design</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Mean square estimates of seed cotton yield per plot for the first and second seasons and the combined estimates across two seasons</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Mean performance of seed cotton yield per plot (g/plot) for first and second season and seed cotton yield (kentar/feddan)</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Mean square estimates of lint cotton yield per plot for the first and second seasons and the combined estimates across two seasons</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>Mean performance of lint cotton yield per plot (g/plot) for first and second season and lint cotton yield (kentar/feddan)</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Mean square estimates of seed cotton yield per plant for the first and second seasons and the combined estimates across two seasons</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Mean square estimates of lint cotton yield per plant for the first and second seasons and the combined estimates across two seasons</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Mean performance of seed cotton yield per plant and lint cotton yield per plant for first and second seasons</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Mean square estimates of lint percentage (L%) for the first and second seasons and the combined estimates across two seasons</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>Mean square estimates of lint index for the first and second seasons and the combined estimates across two seasons</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Mean performance of lint percentage and lint index for first and second season</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>Relative precision estimates of lattice design (RE %) compared to RCBD for seed cotton yield (g/plot)</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>Relative precision estimates of lattice design (RE %)</td>
<td></td>
</tr>
</tbody>
</table>