

Current Status on Performance of CT Colonography and Its Clinical Application

Essay

Submitted for the Partial Fulfillment of Master Degree in **Radiodiagnosis**

Bу

Salma Ahmed El Mokhtar Mohamed Mahfouz Hana

M.B., B.Ch. Faculty of Medicine-Ain Shams University - 2011

Under Supervision of

Prof. Dr. Saad Aly Abd Rabu

Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

Dr. Mohamed Sobhi Hassan

Lecturer of Radiodiagnosis Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University Radiodiagnosis Department 2015

الإستخدام الحالى للتنظير القولونى بإستخدام الأشعة المقطعية و تطبيقاته الأكلينيكية

رسالة

توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من

الطبيبة / سلمي أحمد المختار محمد محفوظ هنا

بكالوريوس الطب والجراحة جامعة عين شمس - ٢٠١١

تحت إشراف

اً.د/ سعد على عبد ربه

أسناذ الأشعة النشخيصية كلية الطب- جامعة عين شمس

د/ محمد صبحی

مدرس الأشعة النشخيصية كلية الطب– جامعة عين شمس

> كلية الطب جامعة عين شمس قسم الأشعة التشخيصية ٢٠١٥

My great thanks and gratitude to **Allah**, for all gifts given to me, and whose help I always seek to put my feet in the right road.

I wish to express my sincere gratitude to **Professor Dr. Saad Aly Abd Rabu,** for his encouragement and constant advice.

I owe special gratitude to **Dr. Mohamed Sobhi Hassan**, for bearing with me and for his constant encouragement and most valuable advice throughout the execution of this work.

I would like to thank my professors for their support and inspiration.

Last but not least, sincere gratitude to *My Parents* your prayers are what sustains me.

سورة البقرة الآية: ٣٢

Anatomy of the Colon 📚

Liver

Fig. (1.3): Axial CT scan of hepatic flexure and transverse colon.

The transverse colon is located within the peritoneal cavity and is the largest and most mobile portion of the large intestine, making its position quite variable in the patient. The descending colon is retroperitoneal and continues inferiorly along the left lateral abdominal wall to the iliac fossa, where it curves to become the S-shaped sigmoid colon posterior to the bladder (*fig1.4*), and the sigmoid colon joins the rectum, which forms the terminal portion of the colon extending from the level of S3 to the tip of the coccyx (*Kelley and Petersen, 2013*).

Contents

Subjects Page		
Li Li	st of abbreviationsst of Figures	
•	Introduction	1
•	Anatomy of the colon	4
•	Normal anatomy of the colon as seen by CT	C 11
•	Pathological conditions of the colon	
•	Physical principals of virtual colonoscopy	
•	Technique of CT colonography	
	 Patient preparation and tagging 	
	Image display methods	
•	Current applications of CT Colonography	in
	different colonic pathologies	
•	CT Colonography as a screening tool	
•	Summary and conclusion	
•	References	
•	Arabic Summary	

List of Abbreviations

ACS	American cancer society
ACRIN	The American College of Radiology
	Imaging Network
ACR	The American College of Radiology
BE	Barium Enema
CAD	Computer Aided Design
CC	Conventional colonoscopy
CRN	Colorectal neoplasia
СТС	CT colonography
EC	Electronic cleansing
ESGAR	European Society Of Gastrointestinal And
	Abdominal Radiology
ESGE	European Society Of Gastrointestinal
	Endoscopy
FIT	Faecal Immune Testing
FOBT	Faecal Occult Blood Test
NPV	Negative predictive value
OC	Optical Colonoscopy
РСР	Primary Care Physician
PPV	Positive predictive value
US-SEER	United States Surveillance, Epidemiology,
	and End Results
US-PSTF	United States Preventive Services Task
	Force

List of Figures

Fig. No.	Title	Page No.
1.1a	Illustration of the anatomy of the large	4
1 11	Intestine	5
1.1D	Avial CT approximation and the level ilea appal value	5
1.2	Axial CT scan at the level fileo-cecal valve	0
1.3	Axial CI scan of hepatic flexure and transverse colon	/
14	Axial CT scan of the sigmoid colon	8
1.5	Illustration of the blood supply of the large bowel	10
1.6a	3D endoluminal view, Rectum with Foley's catheter and distal valve of Houston	11
1.6b	Coronal 2D image through the proximal valve of Houston	12
1.7a	3D endoluminal view of the sigmoid colon showing smooth folds in a patient with no muscular hypertrophy or diverticulosis	13
1.7b	Corresponding endoscopic view	13
1.8	3D endoluminal view, and corresponding endoscopic view of the descending colon, showing the colonic folds lying further apart.	14
1.9	3D endoluminal view looking "up" the splenic flexure into both the proximal and distal limbs	15
1.10	The 3D endoluminal view, showing the triangular shape of the lumen of the transverse colon and the corresponding endoscopic view	15
1.11	3D endoluminal view and corresponding endoscopic view of the cecum	16
1.12	Labial shaped ileo-cecal valve in both	17
a	sagittal 2D view and 3D endoluminal view	

Title	Page No.
Papillary shaped ileo-cecal valve in both	18
axial 2D and endoluminal 3D views	
Ileo-cecal valve with opened orifice as	18
showed in both 2D coronal view and 3D	
endoluminal view	
illustration of the diverticular disease of the	20
colon	
Double contrast Barium enema	21
supine axial CT image at the level of the	22
sigmoid colon, shows multiple diverticular	
orifices, as well as, a large extraluminal gas	
collection due to acute diverticulitis and	
abscess formation	2.4
optical colonoscopy shows multiple	24
diverticular orifices , with the corresponding	
3D endoluminal view	27
Supine plain x-ray abdomen, snowing	27
double contrast Deriver chore chowing	20
double contrast Barlum enema, snowing	28
descending colon	
avial CT showing the fat halo sign	30
Barium follow through showing duodenal	35
narrowing in a case of Crhon's disease	55
illustration of the subtypes of adenomas	39
illustration of sites of carcinoma in different	40
types of polyps	.0
Paris classification of small flat adenomas	42
illustration of both Dukes' classification and	44
TNM of colorectal carcinoma	
Multiplanar sagittal reconstruction of a	49
sessile polyp studied at 1mm(a), 2.5 mm(b)	
and 5 mm(c).	
	TitlePapillary shaped ileo-cecal valve in both axial 2D and endoluminal 3D viewsIleo-cecal valve with opened orifice as showed in both 2D coronal view and 3D endoluminal viewillustration of the diverticular disease of the

Fig. No.	Title	Page No.
4.1	[a]:2D CTC with patient in prone position,	69
a,b,c	demonstrating a polyp submerged in a pool	
	of contrast agent. [b] 2D CTC of the same	
	patient with electronic cleansing of contrast	
	agent showing the same polyp not	
	submerged in contrast. [c] 2D CTC with the	
	patient supine showing the same polyp	
	surrounded by air due to movement of	
	contrast agent	
4.2	2D multiplanar view of a pedunculated polyp	79
	on a fold with coronal and sagittal reformate	
	, and axial source data, 3D endoluminal view	
4.2	for correlation	01
4.5	Submerged polyp visible only through	81 82
a,D	ragged fluid on 2D view (axial & sagittal	82
1 30	2D and aluminal view suping and propa	82
4.30	obscuring the visualization of the submerged	02
	nolvn	
	Flat lesion seen at supine and prone (axial	83
a h	and sagittal reformat) & 3D endoluminal	84
u, 0	view	01
4.5	3D endoluminal panoramic view on	86
	antegrade flythrough, with "paint" function	
	illustrating non visualized mucosal surfaces	
	appears as darker color on the right and pink	
	on the left	
4.6	3D translucency tool permits evaluation of	88
	polyp density directly within the 3D viewing	
	pane. Red represents soft tissue density.	
4.7	Colon maps display an overview of colonic	89
	anatomy through surface rendering of the air	
	mucosal interface at the colonic wall. Direct	

Fig. No.	Title	Page No.
	correlation with 3D endoluminal views aids	
	in localization and orientation during 3D fly	
	through cine navigation.	
4.8	6mm sessile polyp on a haustral fold, this	90
	polyp may be more difficult to distinguish	
	from the haustral fold on a 2D axial image	
	than on the corresponding 3D image.	
4.9	Flattened view, the complete colon is	94
	displayed on the monitor, being divided into	
	three strips	
4.10	Point to point correlation between flattened	95
	view and 2D/3D images showing a 9mm	
	pedunculated polyp on the 2D/3D images,	
	that has an elongated appearance on the	
	virtual dissection image "distortion of polyp	
	morphology"	
4.11	Annular constricting mass on flattened view.	96
4.12	Unfolded cube projection	97
4.13	Panoramic endoluminal display "Band" view	100
5.1	annular mass of the ascending colon in a 94-	107
a,b	year old woman	
5.1	Enhancement of the neoplastic mucosa is	108
c,d	evident using abdominal window level	
	setting after IV injection of iodinated	
	contrast agent, with 3D endoluminal view.	
5.2	Annular mass in the ascending colon with	109
a,b,	pericolonic fat stranding	
c,d		
5.3	Annular mass of the caecum misdiagnosed at	110
a,b,	barium enema examination	
c,d		
6.1	Classification of flat non polypoidal lesions	138

Introduction

CT Colonography, or what is known as virtual colonoscopy (VC), has been introduced to the medical society in the early 90's as a new modality for screening and diagnosis of colorectal carcinoma, ever since researches have blossomed to include clinical trials, software development, interpretation of visualization methods, radiation dose evaluation and the study of extracolonic findings (*Dachman and Yoshida, 2003*).

In the early 1980 CT technology showed a rapid advancement, from single slice scanners to helical imaging which permitted the acquisition of a contiguous volume of anatomy during a single breath hold. At the same time, computer technology was rapidly advancing to allow virtual reality simulations.

Intravenous contrast enhanced CT had already been well established as a means of staging an already known cases of cancer colon, and inflation of the colon with gas to improve the visualization of the colon was done as early as 1981.Researchers at New York University reported then that the distention of the colon with gas helped in raising the detection rate of cancer colon to 95% versus 68% if no special attempts were made to promote visualization of the colonic wall (*Laghi et al., 2013*). The key invention for creating the 3D endoluminal fly-through method, was the work of Dr. David J. Vining, his inspiration for creating virtual colonoscopy as it is known nowadays was brought about by combining the advances in helical CT scanning technology with virtual reality computing that is used in flight simulator games, thus enabling him to navigate the volume of data generated by helical CT, and literally travel inside a simulation of the human body.

The first trial for the VC examination was done in September 1993, the single-slice spiral CT scanner that was used took approximately 1 minute to scan the patient during an attempt breath-hold, and the VC flight required more than 8 hours for the computer to process. Today, multidetector CT scans the body in a matter of seconds, and 3D processing occurs in real time on laptop computers.

Early clinical trials of VC yielded promising results, with some pioneer researchers reported high sensitivities exceeding 90% for the detection of polyps \geq 1cm, while others countered those results by other less appealing results. Those differences were attributed to several factors including; the type of patient cohort, training and experience of the readers and 2D versus 3D analysis technique (*Laghi et al., 2013*).

Near the end of the first decade of the new millennium, a study led by Dr. Perry Pickhardt, represented the largest screening trial to date with the evaluation of over 1,200 patients in the military. New technological breakthroughs were introduced, including stool tagging and subtraction, use of segmental unblinding to improve the reference standard beyond colonoscopy, and use of 3D as a primary image display review. Dr. Pickhardt's study set a benchmark of 90% sensitivity for the detection of polyps \geq 1cm and 80% for 6-8mm polyps in asymptomatic patients at low risk (*Laghi et al., 2013*).

As the first decade closed, studies evolved and new technologies emerged such that some recent studies show good sensitivity for the identification of non-polypoidal (flat) lesions as well. Furthermore, there are some researches to test the reliability of CTC as a screening program for early detection of cancer colon, yet it is not finally established.

Anatomy of the Colon

The colon is the last part of the intestinal canal, constituting the second main division of the large intestine with the other two parts being the caecum and the rectum *(Kelly and Peteresen, 2013).*

The large intestine (large bowel) lies inferior to the stomach and liver and almost completely frames the small intestine. It has a larger diameter and thinner walls than the small intestine and is approximately 1.5 meters long, starting at the ileo-cecal junction and ending at the anus. The outer, longitudinal muscle of the large intestine forms three thickened bands called <u>taenia coli</u> that gather the caecum and colon into a series of pouch like folds called <u>haustra (fig1.1a)</u>. On the outer surface of the large intestine there are small fat-filled sacs of omentum called the <u>epiploic appendages</u>.

Fig. (1.1a): Illustration of the anatomy of the large intestine.

