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Abstract
As the metal-oxide-semiconductor (MOS) devices in Silicon (Si) Very

Large Scale Integration (VLSI) are aggressively scaled down to less than
50 nano meter regime, scaling of the gate dielectric thickness has simulta-
neously reached as thin as a few nano meters. With decreasing thickness of
the oxide layer, the tunneling current through the gate oxide layer increases
in a nearly exponential manner. This increase in the leakage current not
only detrimentally affects the MOS Field Effect Transistor (MOSFET) per-
formance but also greatly increases the power consumption of the VLSIs,
which should be overcome to extend further development in VLSI tech-
nologies. Thus, understanding and predicting the tunneling current at high
as well as at low bias levels is quite important for the continuous devel-
opment of advanced nano-scale MOS devices and meaningful Technology
Computer Aided Design (TCAD) applications.

The aim of this thesis is to model and simulate the gate leakage cur-
rent by using a full two-dimensional (2D) non-equilibrium Green’s func-
tion formalism (NEGF) analysis with open boundary conditions at every
electrode (source, drain, top-gate, and bottom gate), which can consider
wave nature of electrons in the nano scaled devices coupled with Poisson’s
equation. The model was implemented into FETMOSS device simulator
and results were presented.

Key Words: DG MOSFETs, FETMOSS, Gate leakage current, NEGF,
Quantum transport, Real-space.
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