

LARGE SCALE PHYSICAL MODELING OF EMBANKMENT DAMS BREACH

By

Muhammad Ashraf Elsayed Muhammad

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in **Irrigation and Hydraulics Engineering**

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

LARGE SCALE PHYSICAL MODELING OF EMBANKMENT DAMS BREACH

By

Muhammad Ashraf Elsayed Muhammad

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in **Irrigation and Hydraulics Engineering**

Under the Supervision of

Prof. Dr. Alaa El-Din M. El-Zawahry

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering, Cairo University Prof. Dr. Entesar A. S. El-Ghorab

Deputy Director of the Hydraulics Research Institute, National Water Research Center

Dr. Ahmed Hussein Ahmed Soliman

Assistant Professor Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

LARGE SCALE PHYSICAL MODELING OF EMBANKMENT DAMS BREACH

By

Muhammad Ashraf Elsayed Muhammad

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in **Irrigation and Hydraulics Engineering**

Approved by the Examining Committee

Prof. Dr. Alaa El-Din M. El-Zawahry

(Thesis main advisor)

Prof. Dr. Ahmed Emam Ahmed

(Internal examiner)

Prof. Dr. Ashraf Abdelhay Said Elashaal(External examiner)Emeritus Professor, National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Date of Birth: Nationality: E-mail: Phone: Address: Registration Date: Awarding Date: Degree: Department:	Muhammad Ashraf Elsayed Muhammad 9/1/1993 Egyptian Mashsayed@gmail.com 01147793577 11 Swiss company st, Maadi, Cairo 1/10/2014 //2018 Master of Science Irrigation and Hydraulics Engineering
Supervisors:	Prof. Alaa El-Din M. El-Zawahry Prof. Entesar A. S. El-Ghorab (Deputy Director of the Hydraulics Research Institute,
	National Water Research Center) Dr. Ahmed Hussien Ahmed Soliman
Examiners:	Prof. Alaa El-Din M. El-Zawahry (Thesis main advisor) Prof. Ahmed Emam Ahmed (Internal examiner) Prof. Ashraf Abdelhay Said Elashaal (External examiner) (Emeritus Professor, National Water Research Center)

Title of Thesis:

LARGE SCALE PHYSICAL MODELING OF EMBANKMENT DAMS BREACH

Key Words:

Embankment; breach parameters; overtopping; physical modeling

Summary:

Embankment dams are the most common type of dams built across the world and they are especially susceptible to failure by overtopping, which is the most common mode of failure of dams worldwide. Understanding the failure mechanisms in embankment dams and levees can lead to better design of flood mitigation, flood mapping, and flood warning systems. Many embankment breach experiments were reported in the literature but they are usually conducted on small scale non-cohesive embankments. A database of 123 events of embankment failure due to overtopping was collected and analyzed using nonlinear regression analysis to provide new equations for calculating several parameters describing the breach process. Moreover, this study uses a large scale physical model constructed on the premises of the Hydraulic Research Institute to model the failure of large scale cohesive and non-cohesive soil embankments. Instantaneous photos, grid of wires, and graded steel rods were used to capture the morphological changes in the embankment during the experiments. A 3D representation of the embankment failure was produced and the stages of the breach process were analyzed. The study showed the great extent to which soil properties affects the failure of embankments due the variation in breach process for embankments with same dimensions but different soil compositions. Finally, the derived breach parameter equations were assessed using the results from the physical model and yielded good agreement for the non-cohesive embankments.

Acknowledgments

Experimental work conducted and reported within this thesis is part of an ongoing collaborative research project between the Hydraulic Research Institute, Egypt and the University of South Carolina, USA.

I would like to thank my supervisors Prof. Alaa El-Zawahry and Dr Ahmed Soliman for their guidance during working on this study and the continuous learning opportunities they presented me since my undergraduate studies at Cairo University. I also wish to thank my supervisor Prof Entesar El-Ghorab for her support and guidance that facilitated many aspects of the required experimental work for this study.

Moreover, I would like to thank the embankment failure project team in the Hydraulics Research Institute for their hard and dedicated work on this project, and the technicians and laborers who worked in the field even during scorching summer days.

I would like also to thank my friends in Egypt and the United States for their continuous support, especially my dear friend Mohanad Zaghloul.

Finally, I would like to thank my two brothers and my sister for all their support, and I would like to express my deepest gratitude to my father, Prof. Ashraf Ismail, and my mother, Dr. Fatma Sallam, for their patience and guidance during each step of my life and career.

Table of Contents

ACKNOV	VLEDGMENTS	IV
TABLE C	OF CONTENTS	V
LIST OF	TABLES	.VII
LIST OF	FIGURES	VIII
NOMENO	CLATURE	XI
ABSTRA	СТ	.XII
СНАРТЕ	R 1 : INTRODUCTION	1
1.1.	PROBLEM DEFINITION	1
1.2.	Objectives	2
1.3.	Methodology	2
1.4.	ORGANIZATION OF THE THESIS	4
СНАРТЕ	R 2 : LITERATURE REVIEW	5
2.1.	INTRODUCTION	5
2.2.	RELEVANCE OF THE STUDY	5
2.3.	MODELING APPROACHES	6
2.3.1.	Statistical parameter estimation	6
2.3.2.	Physical modeling	10
2.3.3.	Numerical modeling	17
2.4.	SUMMARY	19
СНАРТЕ	R 3 : DERIVATION OF BREACH PARAMETERS EQUATIONS	21
СНАРТЕ	R 4 : PHYSICAL MODEL DESCRIPTION	53
4.1.	PHYSICAL MODEL COMPONENTS AND INSTRUMENTATION	53
4.2.	EMBANKMENT CONSTRUCTION OF SCENARIO #5	59
4.3.	Test Procedure	67
СНАРТЕ	R 5 : RESULTS AND ANALYSIS	73
5.1.	Physical Model results	73
5.1.1.	Scenario five	73
5.1.2.	Other four scenarios	84
5.2.	ANALYSIS OF RESULTS FROM THE PHYSICAL MODEL	87
5.3.	ASSESSMENT OF DERIVED BREACH PARAMETER EQUATIONS USING PHYS	ICAL
MODEL I	RESULTS	89
СНАРТЕ	R 6 : SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	
FOR FUT	URE WORK	90
6.1.	SUMMARY AND CONCLUSIONS	90

6.2.	RECOMMENDATIONS FOR FUTURE WORK	91
REFERE	ENCES	92
APPENI	DIX A: SOIL MIXTURE CODE	95
APPENI	DIX B: KENDALL RANK CORRELATION COEFFICIENT CO)DE98
APPENI	DIX C: NONLINEAR FITTING AND RESIDUALS SCRIPT	
APPENI	DIX D: UNCERTAINTY ASSESSMENT SCRIPT	101
APPENI	DIX E: 3D REPRESENTATION MATLAB SCRIPT AND DATA	
APPENI	DIX F: DATA OF EMBANKMENT FAILURE DUE TO	
OVERT	OPPING	

List of Tables

Table 1.1: Occurrences of different modes of dam failure
Table 2.1: C _b values corresponding to reservoir storage
Table 2.2: Summary of dam breach parameters prediction models, modified after Xu
and Zhang (2009)
Table 2.3: Soil compositions in the series of lab tests 14
Table 2.4: Comparison of different numerical breach models 18
Table 3.1: The computed values of Pearson r coefficient and Kendall's T coefficient .25
Table 3.2: Summary of regression analysis of Hf and normality of residuals 40
Table 3.3: Summary of regression analysis of B and normality of residuals
Table 3.4: Summary of regression analysis of Q _p and normality of residuals44
Table 3.5: Summary of regression analysis of T _f and normality of residuals47
Table 3.6: Comparison between uncertainty of derived equations and equations in the
literature
Table 4.1: Conducted embankment failure tests by the HRI
Table 4.2: Composition of the available soils 61
Table 4.3: Composition of the grouped soils
Table 4.4: Steps used to determine amount of water to be added to the mixture
Table 4.5: Specifications of compactors used in embankment construction
Table 4.6: Sample calculations sheet of Sand Cone test 67
Table 5.1: Comparison of results from three tests conducted by HRI
Table 5.2: Computed and observed breach parameters using derived breach parameters
equations and data from HRI test
Table E.1: Data for embankment after breach102
Table F.1: Data for historical and experimental embankment failure instances due to
overtopping104

List of Figures

Figure 1.1: Schematic diagram of the physical model operation	3
Figure 1.2: Methodology and approach of this study	4
Figure 2.1: breach opening parameters and embankment dimensions	7
Figure 2.2: Hydraulic flow regimes and erosion zones (Powledge et al. 1989)	10
Figure 2.3: (a) photo during breach test, (b) detected grid points (Schmocker 2011)	11
Figure 2.4: Progressive erosion in non-cohesive embankment at different times <i>t</i>	11
Figure 2.5: Photos of progressive erosion in non-cohesive embankment	12
Figure 2.6: Breach process stages during overtopping of cohesive soil embankments.	13
Figure 2.7: Schematic of the field scale experiment (Kietil et al. 2004)	13
Figure 2.8: photos of the breach in field-scale embankment experiment (Kietil et al.	
2004)	14
Figure 2.9: Top view of the breach evolution of non-cohesive soil embankment	
(Feliciano Cestero et al. 2014).	15
Figure 2.10: Effect of cohesive fines on discharge (Feliciano Cestero et al. 2014)	16
Figure 2.11: plan view of the foam tracer grid (Feliciano Cestero et al. 2014)	16
Figure 2.12: Classification of failure modes due to overtopping according to diameter	
of embankment material (Morris et al. 2008)	17
Figure 2.13: Simulated Spatial dyke breach leading to hour-glass breach formation	1,
arrow shows direction of flow (Volz 2013)	19
Figure 3.1. Histogram and boxplot of dam height (H) values in the collected data	22
Figure 3.2: Histogram and boxplot of each height (1) values in the collected data	22
Figure 3.3: Histogram and boxplot of average dam width (W) in the collected data	23
Figure 3.4: Histogram and boxplot of time of breach formation (T_{f}) in collected data	23
Figure 3.5: Histogram and boxplot of Peak Outflow (Ω_n) values in the collected data	$\frac{23}{23}$
Figure 3.6: Histogram and boxplot of breach height (H_f) values in the collected data.	$\frac{23}{24}$
Figure 3.7: Histogram and boxplot of average breach width (B) in the collected data	$\frac{24}{24}$
Figure 3.8: Comparison between computed and observed He as a function of H	26
Figure 3.9: Comparison between computed and observed H_{f} as a function of V	26
Figure 3.10: Comparison between computed and observed $H_{\rm f}$ as a function of $W_{\rm f}$	20
Figure 3.11: Comparison between computed and observed H_{f} as a function of W	$\frac{27}{27}$
Figure 3.12: Comparison between computed and observed H ₁ as a function of HW	$\frac{27}{28}$
Figure 3.12: Comparison between computed and observed H ₁ as a function of VW	20
Figure 3.14: Comparison between computed and observed H ₁ as a function of HWV	20
Figure 3.15: Comparison between computed and observed B as a function of H	$\frac{2}{20}$
Figure 3.16: Comparison between computed and observed B as a function of V	2)
Figure 3.17: Comparison between computed and observed B as a function of W	30
Figure 3.18: Comparison between computed and observed B as a function of HV	30
Figure 3.10: Comparison between computed and observed B as a function of HW	31
Figure 3.20: Comparison between computed and observed B as a function of VW	37
Figure 3.21: Comparison between computed and observed B as a function of HVW	$\frac{32}{32}$
Figure 3.22: Comparison between computed and observed O as a function of H	32
Figure 3.22. Comparison between computed and observed Q_p as a function of V_1	22
Figure 3.2.3. Comparison between computed and observed Ω_{p} as a function of W	33 37
Figure 3.25: Comparison between computed and observed Ω_p as a function of W_{p} .	24 27
Figure 3.23. Comparison between computed and observed Q_p as a function of HV	24 25
Figure 3.20. Comparison between computed and observed Q_p as a function of HW	25
Figure 5.27: Comparison between computed and observed Q_p as a function of VW	33

Figure 3.28: Comparison between computed and observed Q _p as a function of HVW	.36
Figure 3.29: Comparison between computed and observed T_f as a function of H	36
Figure 3.30: Comparison between computed and observed T _f as a function of V	37
Figure 3.31: Comparison between computed and observed T _f as a function of W	37
Figure 3.32: Comparison between computed and observed T _f as a function of HV	
Figure 3.33: Comparison between computed and observed T_f as a function of HW	.38
Figure 3 34: Comparison between computed and observed T_f as a function of VW	39
Figure 3.35: Comparison between computed and observed T_f as a function of HVW	39
Figure 3.36: R^2 RMSE and MAPE for H _f computed from different combination of	
dam properties	40
Figure 3 37: Comparison between H_f computed by the derived equation and the	
equation developed by Soliman (2015)	41
Figure 3 38. The residuals from the chosen equation for H_f plotted against normally	•••
distributed residuals	41
Figure 3.39: R^2 RMSE and MAPE for B computed from different combination of d	am
properties	42
Figure 3.40. Comparison between B computed by the derived equation and the equat	tion
developed by Soliman (2015)	43
Figure 3.41: The residuals from the chosen equation for B plotted against normally	. 15
distributed residuals	43
Figure 3.42: \mathbb{R}^2 RMSE and MAPE for $\Omega_{\rm e}$ computed from different combination of	. 15
dam properties	$\Delta \Delta$
Figure 3.43: Comparison between $\Omega_{\rm p}$ computed by the derived equation and the	
equation developed by Hagen (1982)	45
Figure 3.44: Comparison between On computed by the derived equation and the	
equation developed by Pierce (2010)	45
Figure 3.45: The residuals from the chosen equation for On plotted against normally	. 15
distributed residuals	46
Figure 3.46: R^2 RMSE and MAPE for T _f computed from different combination of d	lam
properties	46
Figure 3.47. Comparison between T_{f} computed by the derived equation and the	. 10
equation developed by Soliman (2015)	47
Figure 3.48. The residuals from the chosen equation for T_{f} plotted against normally	•••
distributed residuals	48
Figure 3.49. Variation of the coefficients of the H_f equation due to resampling	48
Figure 3.50: Variation of the coefficients of the B equation due to resampling	49
Figure 3.51: Variation of the coefficients of the $O_{\rm p}$ equation due to resampling	49
Figure 3.52: Variation of the coefficients of the T_f equation due to resampling	49
Figure 3.53: Upper and lower bounds in the variation of H_f due to resampling	50
Figure 3.54: Upper and lower bounds in the variation of B due to resampling	50
Figure 3.55: Upper and lower bounds in the variation of On due to resampling	51
Figure 3.56. Upper and lower bounds in the variation of T_f due to resampling	51
Figure 4.1. Tested embankments profile	53
Figure 4.2: General Layout of the physical Model	54
Figure 4.3. The two pipes conveying water to the unstream reservoir	55
Figure 4.4. Cross-section of the testing flume	55
Figure 4.5. Testing flume during construction	56
Figure 4.6: The Sharp Crested Weir and the approach channel looking unstream	.56
Figure 4.7: Cross-section of the stilling basins and approach channel	.57
Figure 4.8: The two drainage pipes on the downstream basin	

Figure 4.9: Piezometer and sensors measuring head over the sharp-crested weir	.58
Figure 4.10: Calibration data and equation of the sharp-crested weir	.58
Figure 4.11: Ultrasonic flow meters installed on the feeding pipes	.59
Figure 4.12: Senor measuring water level inside the upstream reservoir	.59
Figure 4.13: Embankment dimensions	.60
Figure 4.14: Grain size distribution of the available natural soils	.60
Figure 4.15: Sample run of the mixture finding program	.62
Figure 4.16: Results from the mixture finding program	.62
Figure 4.17: Grain Size Distribution Curve for the Soil Mixture	.63
Figure 4.18: Test results of the modified compaction proctor test	.63
Figure 4.19: Mechanical mixer used for soil preparation	.64
Figure 4.20: Compactors used during construction of the embankment	.65
Figure 4.21: Soil compaction during embankment construction phase	.66
Figure 4.22: Sand cone samples used to determine soil dry density on a previous test	.66
Figure 4.23: Filling up of the downstream basins before commencing the test	.68
Figure 4.24: Locations of the measuring bridges on the downstream face	.68
Figure 4.25: Photo of the two bridges on the downstream face of the embankment	.69
Figure 4.26: Metal wires on the downstream face of the embankment	.69
Figure 4.27: Filling the upstream reservoir	.70
Figure 4.28: the flume upstream the embankment filled with water	.70
Figure 4.29: Stationary cameras downstream of the embankment	.71
Figure 4.30: Water flowing through the pilot channel	.72
Figure 5.1: Photos of scenario #5 embankment breach through first hour of test	.73
Figure 5.2: Photos of scenario#5 embankment breach through 88 min - 438 min	.74
Figure 5.3: Photos of scenario#5 embankment breach through 874 min - 1834 min	.75
Figure 5.4: headcuts and scour hole at the lower half of the downstream slope	.76
Figure 5.5: headcuts at the upper half of the downstream slope	.76
Figure 5.6: overall view of headcuts and scouring in embankment body	.77
Figure 5.7: Plan view photos of the embankment crest	.77
Figure 5.8: Sample reading from the upstream reservoir sensor	.78
Figure 5.9: Water level in the upstream reservoir and flow over downstream weir	.78
Figure 5.10: Close-up photo of the upper set of rods	.79
Figure 5.11: Close-up photo of the lower set of rods	.79
Figure 5.12: Average breach depth at crest and middle of downstream slope	.80
Figure 5.13: Development of breach at downstream end of embankment crest	.80
Figure 5.14: Development of breach at the middle of the downstream slope	.81
Figure 5.15: Plan view of the development of breach on the downstream slope	.82
Figure 5.16: 3D representation of the embankment before breach initiation	.83
Figure 5.17: 3D representation of the embankment at the end of the test	.83
Figure 5.18: Initial and final breach shape for test#1	.84
Figure 5.19: Outflow hydrograph from test#1	.84
Figure 5.20: Initial and final breach shape for test#2	.85
Figure 5.21: Outflow hydrograph from test#2	.85
Figure 5.22: Initial and final breach shape for test#3	.86
Figure 5.23: Outflow hydrograph from test#3	.86
Figure 5.24: Initial and final breach shape for test#4	.87
Figure 5.25: Outflow hydrograph from test#4	.87
Figure 5.26: Change in Tf and Qp as %Clay of soil changes in tests by Feliciano	0.5
Cestero et al. (2014)	.88

Nomenclature

1-D	One-Dimensional	
2-D	Two-Dimensional	
3-D	Three-Dimensional	
ASCE	American Society of Civil Engineers	
cm	Centimeters	
D/S	Downstream	
ESRI	Environmental System Research Institute	
HRI	Hydraulics Research Institute	
hrs	Hours	
km	Kilometers	
km ²	Squared Kilometer	
LS^{-1}	Litres per Second	
m	Meters	
m^2	Squared Meter	
$m^{3}s^{-1}$	Cubic meters per second	
MAPE	Mean Absolute Percentage Error	
Matlab	Matrix Laboratory (software)	
MCM	Million Cubic Meters	
\mathbb{R}^2	Coefficient of determination	
RMSE	Root Mean Squared Error	
U/S	Upstream	
USA	United States of America	

Abstract

Failure of dams and levees can have catastrophic impacts on the downstream regions as it leads to huge loss of life, death of livestock, destruction of buildings and infrastructure. Dams and levees are expected to be under greater threat from more frequent and more severe floods due to climate change. Embankment dams are the most common type of dams built across the world and they are especially susceptible to failure by overtopping, which is the most common mode of failure of dams and levees worldwide. Understanding the failure mechanisms in embankment dams and levees can lead to better design of flood mitigation, flood mapping, and flood warning systems. Many studies concluded from analyzing historical dam failure incidents that adequate warning time can lead to a significant saving of lives from the population at risk.

However, there are many complex and interacting hydrodynamic and morphological processes involved in the failure event that are not fully understood yet. That places a big limitation on the ability to model the failure processes especially using numerical models. Moreover, predicting the outcome of the breach failure event by statistical analysis of historical dam failure events produces equations that must be used with cautious outside the data range used to derive the equations. Physical modeling of the breach process can represent a challenge as well. Although, many embankment breach experiments were reported in the literature, they are usually conducted on small scale non-cohesive embankments. The breach process differs significantly from cohesive and non-cohesive embankments, and scaling down of experiments can cause issues related to scaling of material particles.

In this study, the state of the art equations for determining the breach parameters were assessed and were updated by using a database of 123 events of embankment failure due to overtopping. Regression analysis using the multiple linear regression analysis tool in Microsoft excel or the nonlinear regression analysis tool in Matlab to provide new equations for calculating the breach height, average width of the breach opening, the peak discharge from the breach event, and the time for breach formation.

This study uses a large scale physical model constructed on the premises of the Hydraulic Research Institute in Egypt to model the failure of large scale cohesive soil and non-cohesive embankment. The embankments failure was tested due to overtopping by filling a 400 m² reservoir upstream the embankment. Special care was taken regarding proper construction and compaction of soil in the embankment body. Instantaneous photos, grid of wires, and graded steel rods were used to capture the morphological changes in the embankment during the experiments.

The stages of the breach process were thoroughly analyzed, and a Matlab script followed by photo editing was used to produce a 3D representation of the embankment failure. The study showed the great extent to which soil properties affects the failure of embankments due the variation in breach process for embankments with same dimensions but different soil compositions., which showed that the increased percentage of clay in the soil mixture significantly increased the resistance of the embankments to erosion. Finally, the breach parameter equations were assessed using physical model results and yielded good agreement for the non-cohesive embankments.

Chapter 1 : Introduction

1.1. Problem definition

Failure in dams and levees can have destructive impacts on the downstream regions. There are three main failure modes of dams and levees: 1) Overtopping, 2) Pipping (or internal erosion) and 3) Structural failure. Different statistics vary on the percentage of occurrence of these modes of failure. However, according to data collected by Foster et al. (1998) and Costa (1985); overtopping is the primary mode of failure for dams as shown in Table 1.1.

Mode of Failure	Foster et al.	Costa
	Percentage of occurrence (%)	
Overtopping	48	34
Pipping	46	28
Structural	5	30
Others	1	8

Table 1.1: Occurrences of different modes of dam failure

Moreover, throughout the world many dams are constructed as earth-fill or rockfill embankments. For example, statistics released by the US Committee on large dams (1975) indicated that about 80% of the large dams in the United States are constructed using erodible soil material, which makes them especially susceptible to failure by overtopping. Overtopping occurs when an extreme event exceeds the safety evaluation flood of the structure. Once water flow on the downstream side of the dam, a breach process initiates in the body of the dam. The form of the breach process is crucial in determining certain factors such as time till failure, temporal variation in opening dimensions in dam body and the outflow hydrograph from the breached dam (El-Ghorab et al., 2013).

Usually earth-fill dams and levees are constructed from local soil located at the dam site. The soil properties have direct effect on the structure's resistance to failure due to breaching (Orendorff, 2009). Though numerous breaching tests were reported in the literature, two main shortcomings can be noted about them. First, most of these tests were conducted on non-cohesive soils. However, breaching failure in cohesive and non-cohesive soils follows different mechanisms (Orendorff, 2009). Moreover, most of them were conducted on small scale models. Small scale models might not accurately simulate the complex processes involved in levee breach mainly due to material scaling problems (Heller, 2011). For example, ASCE (2011) reported more than 725 test runs on earth-fill dams and levees conduced since the 1960s with breach overtopping as the failure mechanism. However, most of these tests were conducted on small scale with non-cohesive embankment material.

Investigating the breach failure of dams through analyzing historical incidents of dam failures is an alternative approach to evade the challenges associated with constructing and running embankment failure tests. Regression analysis was widely used in deriving equations estimating parameters that describe the breach process (ASCE 2011). Main shortcomings in these equations is combining data form two or more dam failure causes in the derivation of these equations, and the lack of sufficient number of data points used in the regression analysis.

1.2. Objectives

The objectives of this study are as follow:

- Analyze state of the art breach parameters estimation equations, and then use nonlinear regression analysis to derive an updated set of equations.
- Conduct large scale experiments on breach of cohesive and non-cohesive soil embankment.
- Study the breach temporal evolution and the corresponding outflow hydrograph from breached embankments.
- Assess the effects of embankment soil composition on the failure process.
- Use the results from the physical model to investigate the performance of the newly derived breach parameter equations.

1.3. Methodology

Research conducted in this study is composed of two parts: First, the derivation of breach parameters equations, second, physical modeling of embankment breaching. There is a large number of reported dam failure incidents. This historical information can provide a wealth of data compared to the limited number (and sizes) of physical model tests. Consequently, the approach of this study is to derive equations from statistical analysis of historical dam failures then evaluate these equations using the results from physical modelling.

The main objective of the first part of the study is to derive equations used for estimating parameters characterizing the breach process. These parameters are derived using regression analysis by using dam dimensions and properties as the independent variables in the analysis. To carry out this task, data for historical cases of dam failures were collected from various sources. Only data for embankment failures due to overtopping were considered in this study.

Once sufficient data was collected, nonlinear regression analysis was conducted using Matlab scripting to derive the breach parameters estimation equations. These equations were compared to other equations reported in the literature. Finally, the uncertainty in the proposed equations was investigated by resampling from the original set of data to derive different equations and assess the deviations of these equations from the derived equations before resampling.

The second part of the study involves the construction and running of large scale tests of embankment breaching. The selected embankments dimensions represent near life scale of typical emergency levees (ASCE, 1987). The experiments involved embankments from both cohesive and non-cohesive soil compositions. The embankments will be compacted using the standard compaction procedure for small dam. An important requirement will be maintaining a close to constant water surface level upstream the embankment head during the breach process. A constant head during tests near the embankment can be maintained by a large reservoir volume, and adjusting the inflow rate. The breach will be initiated by carving a small pilot channel at the middle