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Summary:  
Embankment dams are the most common type of dams built across the world and they are especially 

susceptible to failure by overtopping, which is the most common mode of failure of dams worldwide. 

Understanding the failure mechanisms in embankment dams and levees can lead to better design of 

flood mitigation, flood mapping, and flood warning systems. Many embankment breach experiments 

were reported in the literature but they are usually conducted on small scale non-cohesive 

embankments. A database of 123 events of embankment failure due to overtopping was collected 

and analyzed using nonlinear regression analysis to provide new equations for calculating several 

parameters describing the breach process. Moreover, this study uses a large scale physical model 

constructed on the premises of the Hydraulic Research Institute to model the failure of large scale 

cohesive and non-cohesive soil embankments. Instantaneous photos, grid of wires, and graded steel 

rods were used to capture the morphological changes in the embankment during the experiments. A 

3D representation of the embankment failure was produced and the stages of the breach process were 

analyzed. The study showed the great extent to which soil properties affects the failure of 

embankments due the variation in breach process for embankments with same dimensions but 

different soil compositions. Finally, the derived breach parameter equations were assessed using the 

results from the physical model and yielded good agreement for the non-cohesive embankments. 
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Abstract 

Failure of dams and levees can have catastrophic impacts on the downstream regions as 

it leads to huge loss of life, death of livestock, destruction of buildings and infrastructure. 

Dams and levees are expected to be under greater threat from more frequent and more 

severe floods due to climate change. Embankment dams are the most common type of 

dams built across the world and they are especially susceptible to failure by overtopping, 

which is the most common mode of failure of dams and levees worldwide. Understanding 

the failure mechanisms in embankment dams and levees can lead to better design of flood 

mitigation, flood mapping, and flood warning systems. Many studies concluded from 

analyzing historical dam failure incidents that adequate warning time can lead to a 

significant saving of lives from the population at risk. 

 

However, there are many complex and interacting hydrodynamic and morphological 

processes involved in the failure event that are not fully understood yet. That places a big 

limitation on the ability to model the failure processes especially using numerical models. 

Moreover, predicting the outcome of the breach failure event by statistical analysis of 

historical dam failure events produces equations that must be used with cautious outside 

the data range used to derive the equations. Physical modeling of the breach process can 

represent a challenge as well. Although, many embankment breach experiments were 

reported in the literature, they are usually conducted on small scale non-cohesive 

embankments. The breach process differs significantly from cohesive and non-cohesive 

embankments, and scaling down of experiments can cause issues related to scaling of 

material particles.  

 

In this study, the state of the art equations for determining the breach parameters were 

assessed and were updated by using a database of 123 events of embankment failure due 

to overtopping. Regression analysis using the multiple linear regression analysis tool in 

Microsoft excel or the nonlinear regression analysis tool in Matlab to provide new 

equations for calculating the breach height, average width of the breach opening, the peak 

discharge from the breach event, and the time for breach formation. 

 

This study uses a large scale physical model constructed on the premises of the Hydraulic 

Research Institute in Egypt to model the failure of large scale cohesive soil and non-

cohesive embankment. The embankments failure was tested due to overtopping by filling 

a 400 m2 reservoir upstream the embankment. Special care was taken regarding proper 

construction and compaction of soil in the embankment body. Instantaneous photos, grid 

of wires, and graded steel rods were used to capture the morphological changes in the 

embankment during the experiments.  

 

The stages of the breach process were thoroughly analyzed, and a Matlab script followed 

by photo editing was used to produce a 3D representation of the embankment failure. 

The study showed the great extent to which soil properties affects the failure of 

embankments due the variation in breach process for embankments with same 

dimensions but different soil compositions., which showed that the increased percentage 

of clay in the soil mixture significantly increased the resistance of the embankments to 

erosion. Finally, the breach parameter equations were assessed using physical model 

results and yielded good agreement for the non-cohesive embankments. 
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Chapter 1 : Introduction 

1.1. Problem definition 

Failure in dams and levees can have destructive impacts on the downstream regions. There are 

three main failure modes of dams and levees: 1) Overtopping, 2) Pipping (or internal erosion) and 

3) Structural failure. Different statistics vary on the percentage of occurrence of these modes of 

failure. However, according to data collected by Foster et al. (1998) and Costa (1985); 

overtopping is the primary mode of failure for dams as shown in Table 1.1. 

Table 1.1: Occurrences of different modes of dam failure 

Mode of Failure 
Foster et al. Costa 

Percentage of occurrence (%) 

Overtopping 48 34 

Pipping 46 28 

Structural 5 30 

Others 1 8 

 

Moreover, throughout the world many dams are constructed as earth-fill or rockfill embankments. 

For example, statistics released by the US Committee on large dams (1975) indicated that about 

80% of the large dams in the United States are constructed using erodible soil material, which 

makes them especially susceptible to failure by overtopping. Overtopping occurs when an extreme 

event exceeds the safety evaluation flood of the structure. Once water flow on the downstream 

side of the dam, a breach process initiates in the body of the dam. The form of the breach process 

is crucial in determining certain factors such as time till failure, temporal variation in opening 

dimensions in dam body and the outflow hydrograph from the breached dam (El-Ghorab et al., 

2013).  

 

Usually earth-fill dams and levees are constructed from local soil located at the dam site. The soil 

properties have direct effect on the structure’s resistance to failure due to breaching (Orendorff, 

2009). Though numerous breaching tests were reported in the literature, two main shortcomings 

can be noted about them. First, most of these tests were conducted on non-cohesive soils. 

However, breaching failure in cohesive and non-cohesive soils follows different mechanisms 

(Orendorff, 2009). Moreover, most of them were conducted on small scale models. Small scale 

models might not accurately simulate the complex processes involved in levee breach mainly due 

to material scaling problems (Heller, 2011). For example, ASCE (2011) reported more than 725 

test runs on earth-fill dams and levees conduced since the 1960s with breach overtopping as the 

failure mechanism. However, most of these tests were conducted on small scale with non-cohesive 

embankment material. 

Investigating the breach failure of dams through analyzing historical incidents of dam failures is 

an alternative approach to evade the challenges associated with constructing and running 

embankment failure tests. Regression analysis was widely used in deriving equations estimating 
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parameters that describe the breach process (ASCE 2011). Main  shortcomings in these equations 

is combining data form two or more dam failure causes in the derivation of these equations, and 

the lack of sufficient number of data points used in the regression analysis. 

1.2. Objectives 

The objectives of this study are as follow: 

• Analyze state of the art breach parameters estimation equations, and then use nonlinear 

regression analysis to derive an updated set of equations. 

• Conduct large scale experiments on breach of cohesive and non-cohesive soil embankment. 

• Study the breach temporal evolution and the corresponding outflow hydrograph from 

breached embankments. 

• Assess the effects of embankment soil composition on the failure process. 

• Use the results from the physical model to investigate the performance of the newly derived 

breach parameter equations. 

1.3. Methodology 

Research conducted in this study is composed of two parts: First, the derivation of breach 

parameters equations, second, physical modeling of embankment breaching. There is a large 

number of reported dam failure incidents. This historical information can provide a wealth of data 

compared to the limited number (and sizes) of physical model tests. Consequently, the approach 

of this study is to derive equations from statistical analysis of historical dam failures then evaluate 

these equations using the results from physical modelling. 

 

The main objective of the first part of the study is to derive equations used for estimating 

parameters characterizing the breach process. These parameters are derived using regression 

analysis by using dam dimensions and properties as the independent variables in the analysis. To 

carry out this task, data for historical cases of dam failures were collected from various sources. 

Only data for embankment failures due to overtopping were considered in this study.  

 

Once sufficient data was collected, nonlinear regression analysis was conducted using Matlab 

scripting to derive the breach parameters estimation equations. These equations were compared 

to other equations reported in the literature. Finally, the uncertainty in the proposed equations was 

investigated by resampling from the original set of data to derive different equations and assess 

the deviations of these equations from the derived equations before resampling. 

 

The second part of the study involves the construction and running of large scale tests of 

embankment breaching. The selected embankments dimensions represent near life scale of typical 

emergency levees (ASCE, 1987). The experiments involved embankments from both cohesive 

and non-cohesive soil compositions. The embankments will be compacted using the standard 

compaction procedure for small dam. An important requirement will be maintaining a close to 

constant water surface level upstream the embankment head during the breach process. A constant 

head during tests near the embankment can be maintained by a large reservoir volume, and 

adjusting the inflow rate. The breach will be initiated by carving a small pilot channel at the middle 


