SEISMIC LOADS ON LIQUID STORAGE TANKS
ACCORDING TO ECP-201

By

Mohammed Gamal Gouda Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015
SEISMIC LOADS ON LIQUID STORAGE TANKS
ACCORDING TO ECP-201

By

Mohammed Gamal Gouda Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Adel Y. Akl
Prof. Dr. Osman. M. Ramadan

Professor of Struc. Analysis and
Professor of Struc. Analysis and
Mechanics
Mechanics
Structural Engineering Department
Structural Engineering Department
Faculty of Engineering, Cairo University
Faculty of Engineering, Cairo University

Dr. AbbasM. Moustafa

Associate Professor of
Civil Engineering Department
Faculty of Engineering, Minia University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015
SEISMIC LOADS ON LIQUID STORAGE TANKS
ACCORDING TO ECP-201

By

Mohammed Gamal Gouda Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Adel Y. Akl, Thesis Main Advisor
Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Osman M. Osman Ramadan, Member
Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Ahmed H. Amer, Internal Examiner
Professor of structure analysis and mechanics, Faculty of Engineering, Cairo University

Prof. Dr. Osama A. Kamal, External Examiner
Professor of structure analysis and mechanics, Faculty of Engineering, Shoubra, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015
Engineer’s Name: Mohamed Gamal Gouda Hassan
Date of Birth: 14/09/1987
Nationality: Egyptian
E-mail: Mohamed_gouda9@yahoo.com
Phone: +201004910547
Address: Amr Ibn Elasst., Bhaveem, Shobra El-Khema, Qalubia.
Registration Date: 01/10/2009
Awarding Date: …/…/2015
Degree: Master of Science.
Department: Structural Engineering

Supervisors:
Prof. Dr. Adel Y. Akl
Prof. Dr. Osman M. Osman Ramadan
Dr. Abbas M. Moustafa

Examiners:
Porf. Dr. Adel Y. Akl (Thesis main advisor)
Porf. Dr. Osman M. Osman Ramadan (Advisor)
Prof. Dr. Ahmed H. Amer (Internal examiner)
Prof. Dr. Osama A. Kamal, Prof. Faculty of Engineering, Shoubra, Benha University (External examiner)

Title of Thesis:
Seismic Loads on Liquid Storage Tanks According to ECP-201

Key Words:
Seismic loads; Liquid storage tanks; Maximum hydrodynamic pressure; Maximum sloshing wave height.

Summary:
This study investigates the seismic response of RC ground supported rectangular liquid storage tanks. It evaluates the effect of ground motion characteristics (in terms of its response spectrum) on the base shear V, base overturning moment M, hydrodynamic pressure P_{max}, and maximum sloshing wave height d_{max}. Besides, the effect of subsoil properties and the effect of tank width B (perpendicular to the direction of seismic force) are also discussed. A MATLAB program is developed to help in calculating the seismic loads on liquid storage tanks.
Acknowledgements

First of all, thanks to ALLAH for his great mercy and for supporting us all the way.

I would like to express my deep sense of respect and gratitude towards my advisors and guides Prof. Dr. Adel Y. Akl, Prof. Dr. Osman M. Osman Ramadan, and Dr. Abbas M. Moustafa for their continuous support, advice, and guidance throughout my work.

I would like to thank my family. I would also like to thank my wife Sarah for her constant love, understanding and support throughout my life and also my daughter Jodi. I would like to thank my friends who have been the source of my strength and encouragement.
Table of Contents

ACKNOWLEDGEMENTS ... I

TABLE OF CONTENTS ... II

LIST OF TABLES .. V

LIST OF FIGURES .. VI

NOMENCLATURE .. XXVI

ABSTRACT ... X

CHAPTER 1: INTRODUCTION ... 1

1.1. General .. 1

1.2. Scope and objectives of research ... 1

1.3. Research methodology ... 2

1.4. Thesis organization .. 2

CHAPTER 2: LITERATURE REVIEW .. 4

2.1. Causes and characteristics earthquakes ... 4

2.2. Engineering structures .. 6

2.2.1. Liquid storage tanks .. 6

2.2.2. Types of liquid storage tanks ... 6

2.3. Seismic behavior of liquid storage tanks ... 8

2.3.1. Factors affecting seismic behavior .. 9

2.3.1.1. Effect of non-structural elements ... 9

2.3.1.2. Influence of fluid structure interaction ... 9

2.3.1.3. Influence of soil reaction interaction ... 10

2.3.1.4. The effect of asymmetric on liquid storage tanks 10

2.3.2. Previous studies .. 11

2.4. Failures of liquid storage tanks during earthquake ... 16

CHAPTER 3: FLOWCHART AND COMPUTER PROGRAM DEVELOPMENT 18

3.1. Introduction .. 18

3.2. Flowchart .. 18

3.2.1. Explanation of main steps .. 18

3.3. Computer program development “MATLAB software” .. 28

3.3.1. Explanation of using coded file ... 28

3.3.1.1. Input data ... 28

3.3.1.2. Output data .. 29

3.3.2. Example of “RC ground supported rectangular water tank” 29

3.3.2.1. The output Excel sheet .. 35

CHAPTER 4: VERIFICATION EXAMPLES ... 40

4.1. Introduction ... 40

4.2. Example 1: RC ground-supported rectangular storage tank 40
4.2.1. Analysis along X - Direction ... 40
 4.2.1.1. Design horizontal seismic coefficients 40
4.2.2. Analysis along Y – Direction .. 42
4.2.3. Comparison between the results of Egyptian and Indian code ... 42
4.3. Example 2: RC ground-supported rectangular storage tank 43
 4.3.1. Analysis along Y - Direction .. 43
 4.3.1.1. Design horizontal seismic coefficients 43
4.3.2. Comparison between the results of Egyptian and Indian code ... 44
4.4. Discussion of the results ... 45
 4.4.1. For example 1 ... 45
 4.4.2. For example 2 ... 45

CHAPTER 5: PARAMETRIC STUDY ... 46
 5.1. Introduction ... 46
 5.2. Investigated variables ... 46
 5.3. Effect of ground motion characteristics 46
 5.3.1. Impulsive and convective time periods 47
 5.3.2. Soil class A .. 50
 5.3.3. Soil class B .. 65
 5.3.4. Soil class C .. 80
 5.3.5. Soil class D .. 95
 5.3.6. Soil class E .. 110
 5.4. Effect of soil class .. 125
 5.4.1. Response spectrum type 1 125
 5.4.1.1. For L/B = 0.50 ... 125
 5.4.1.2. For L/B = 1.00 ... 139
 5.4.1.3. For L/B = 1.50 ... 153
 5.4.1.4. For L/B = 2.00 ... 167
 5.4.2. Response spectrum type 2 180
 5.4.2.1. For L/B = 0.50 ... 180
 5.4.2.2. For L/B = 1.00 ... 195
 5.4.2.3. For L/B = 1.50 ... 209
 5.4.2.4. For L/B = 2.00 ... 223
 5.5. Effect of tank’s width .. 237
 5.5.1. Length of tank L = 5m 237
 5.5.2. Length of tank L = 10m 251
 5.5.3. Length of tank L = 15m 265
 5.5.4. Length of tank L = 20m 279

CHAPTER 6: PROPOSED MODIFICATIONS TO ECP-201 293
 6.1. Introduction ... 293
 6.2. Importance factor .. 293
 6.3. Response modification factor 294
 6.4. Using equations instead of figures 294
 6.4.1. Mass and height ratios 294
 6.4.1.1. Circular tanks .. 300
 6.4.1.2. Rectangular tanks 301
6.4.2. Time periods .. 302
 6.4.2.1. Impulsive mode ... 304
 6.4.2.2. Convective mode .. 304
6.5. Hydrodynamic pressures on tank floor and walls .. 305
 6.5.1. Impulsive hydrodynamic pressures ... 305
 6.5.2. Convective hydrodynamic pressures ... 307
6.6. Sloshing wave height ... 310
6.7. Anchorage requirement .. 310

CHAPTER 7: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH ... 312

7.1. Summary .. 312
7.2. Conclusions .. 312
 7.2.1. Effect of ground motion characteristics 313
 7.2.2. Effect of soil class ... 313
 7.2.3. Effect of tank’s width ... 314
7.3. Recommendations for future research .. 314

REFERENCES .. 315

APPENDIX A: DETAILED CALCULATIONS OF VERIFICATION EXAMPLE 1 .. 319

A.1. Example 1: RC ground-supported rectangular storage tank 319
 A.1.1. Weight of various components .. 319
 A.1.2. Analysis along X - Direction .. 320
 - Parameters of spring-mass model ... 320
 ➢ Case of loading: Full tank ... 321
 1) Time periods ... 321
 2) Design horizontal seismic coefficients 322
 3) Base shear .. 323
 4) Maximum moment at bottom of wall 323
 5) Maximum overturning moment .. 324
 6) Hydrodynamic pressures .. 326
 7) Maximum sloshing wave height ... 329
List of Tables

Table 3.1: The Excel calculation sheet ... 35
Table 4.1: Coefficients of earthquake loads for example 1 (ECP-201, 2012) 41
Table 4.2: Comparison between the results of Egyptian and Indian codes 42
Table 4.3: Coefficients of earthquake loads for example 2 (ECP-201, 2012) 44
Table 4.4: Comparison between the results of ECP-201, ACI 350, and Eurocode 8 44
Table 6.1: Importance factor for different types of liquid storage tanks 293
Table 6.2: Response modification factor for different types of liquid storage tanks 295
Table 6.3: Comparison between mass and height ratios obtained from analytical expressions and curves .. 302
Table 6.4: Comparison between coefficients of impulsive time period obtained from analytical expressions and curves ... 304
Table 6.5: Comparison between coefficients of convective time period obtained from analytical expressions and curves .. 305
Table 6.6: Comparison between coefficients of hydrodynamic pressure obtained from analytical expressions and curves .. 310
Table A.1: The weight of various components ... 319
Table A.2: Coefficients of earthquake loads (ECP-201, 2012) 322
List of Figures

CHAPTER 2: LITERATURE REVIEW

Fig 2.1: Inside the earth (Datta, 2010) .. 5
Fig 2.2: Earthquake characteristics (Datta, 2010) .. 5
Fig 2.3: The different types of wall - base connections 7
Fig 2.4: The equivalent spring-mass model of fluid in tank (Livaoglu, and Dogangun, 2005) .. 9
Fig 2.5: Mechanical model for the fluid–structure–soil interaction of the elevated tank (Livaoglu and Dogangun, 2005) 10
Fig 2.6: Damaged of liquid storage tank due to sloshing 17
Fig 2.7: Damaged of shaft under liquid storage tank due to overturning moments 17

CHAPTER 3: FLOWCHART AND COMPUTER PROGRAM DEVELOPMENT

Fig 3.1: Seismic loads on liquid storage tanks according to “ECP-201:2012” 20
Fig 3.2: The main steps of calculation earthquake loads on liquid storage tanks 21
Fig 3.3: Step 1: Defining the type of tank based on height from ground level and the geometric shape .. 22
Fig 3.4: Step 2: Specifying dimensions for all components of storage tank and its weight ... 23
Fig 3.5: Step 3: Deciding case of loading .. 24
Fig 3.6: Step 4: Calculating the spring mass model parameters and time periods of tank .. 25
Fig 3.7: Step 5: Specifying proprieties of tank and earthquake parameters 26
Fig 3.8: Step 6: Calculating earthquake loads and hydrodynamic pressures on liquid storage tanks .. 27
Fig 3.9: The input data: Dimensions of tank container, the height of inner liquid in tank container, and thickness of all tank components .. 29
Fig 3.10: The input data: The density of inner liquid, construction materials density of tank, and characteristics strength of material .. 30
Fig 3.11: The input data: The Egyptian code “ECP-201:2012” coefficients 30
Fig 3.12: The input data: Continue the Egyptian code “ECP-201:2012” coefficients ... 30
Fig 3.13: The output data: Weight and mass of all tank components 31
Fig 3.14: The output data: Parameters of spring mass model 31
Fig 3.15: The output data: Continue parameters of spring mass model 32
Fig 3.16: The output data: Impulsive and convective time periods 32
Fig 3.17: The output data: Determine the horizontal design spectrum 32
Fig 3.18: The output data: Base shear, base moment, and overturning moment 33
Fig 3.19: The output data: Continue Base shear, base moment, and overturning moment ... 33
Fig 3.20: The output data: Continue Base shear, base moment, and overturning moment ... 33
Fig 3.21: The output data: Hydrodynamic pressures and maximum sloshing wave height ... 34
Fig 3.22: The output data: Continue hydrodynamic pressures and maximum sloshing wave height ... 34

CHAPTER 4: VERIFICATION EXAMPLES
Fig 4.1: Ground-supported rectangular storage tank; a) Elevation of tank, and b) Plan of tank ... 41
Fig 4.2: Ground-supported rectangular storage tank; a) Tank, b) Plan, and c) Elevation (Doğangün and Livaoğlu 2008) .. 43

CHAPTER 5: PARAMETRIC STUDY
Effect of ground motion characteristics
Impulsive and convective time periods
Fig 5.1: Variation of time period for impulsive mode \(T_i\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\), (Full tank condition) .. 47
Fig 5.2: Variation of time period for convective mode \(T_c\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\), (Full tank condition) .. 48
Fig 5.3: Variation of time period for impulsive mode \(T_{ie}\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\), (Empty tank condition) ... 49

Soil class A
Fig 5.4: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) \(S_d(T_i)\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 53
Fig 5.5: Variation of horizontal design spectrum for convective mode (For elastic structural analysis) \(S_d(T_c)\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 54
Fig 5.6: Variation of static seismic coefficient \((V/W)\) at the bottom of wall with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 55
Fig 5.7: Variation of static seismic coefficient \((V_t/W)\) under the base slab with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 56
Fig 5.8: Variation of base moment divided by base shear multiplied of height of water coefficient \((M/V.h)\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 57
Fig 5.9: Variation of overturning moment divided by total base shear multiplied of height of water coefficient \((M^*/V_t.h)\) with normalized water height to tank length ratios \((h/L)\) for various ratios \((L/B = 0.50, 1.00, 1.50, \text{ and } 2.00)\). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 58
Fig 5.10: Variation of the ratio between maximum hydrodynamic pressure in circumferential direction on tank wall to hydrostatic pressure \((P_{max}/ \gamma w h)\) with
normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 59

Fig 5.11: Variation of the ratio between maximum sloshing wave height to water height (d_{max}/h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 60

Fig 5.12: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) S_d(T_{ie}) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Full tank condition) ... 61

Fig 5.13: Variation of static seismic coefficient (V/e/W_{con}) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Empty tank condition) ... 62

Fig 5.14: Variation of base moment divided by base shear multiplied of height of water coefficient (M/e/V_e.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Empty tank condition) ... 63

Fig 5.15: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M^*_{e}/V_{te}.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is A, (Empty tank condition) ... 64

Soil class B

Fig 5.16: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) S_d(T_{i}) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 68

Fig 5.17: Variation of horizontal design spectrum for convective mode (For elastic structural analysis) S_d(T_{c}) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 69

Fig 5.18: Variation of static seismic coefficient (V/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 70

Fig 5.19: Variation of static seismic coefficient (V_{t}/W) under the base slab with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 71

Fig 5.20: Variation of base moment divided by base shear multiplied of height of water coefficient (M/V.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 72

Fig 5.21: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M^*_{t}/V_{te}.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 73
(h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 73

Fig 5.22: Variation of the ratio between maximum hydrodynamic pressure in circumferential direction on tank wall to hydrostatic pressure ($P_{max}/\gamma_w h$) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 74

Fig 5.23: Variation of the ratio between maximum sloshing wave height to water height (d_{max}/h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 75

Fig 5.24: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) $S_d(T_{ie})$ with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 76

Fig 5.25: Variation of static seismic coefficient (V_e/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 77

Fig 5.26: Variation of base moment divided by base shear multiplied of height of water coefficient ($M_e/V_e h$) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 78

Fig 5.27: Variation of overturning moment divided by total base shear multiplied of height of water coefficient ($M_{e*}/V_{e*} h$) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is B, (Full tank condition) ... 79

Soil class C

Fig 5.28: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) $S_d(T_{ic})$ with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 83

Fig 5.29: Variation of horizontal design spectrum for convective mode (For elastic structural analysis) $S_d(T_c)$ with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 84

Fig 5.30: Variation of static seismic coefficient (V/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 85

Fig 5.31: Variation of static seismic coefficient (V_c/W) under the base slab with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 86

Fig 5.32: Variation of base moment divided by base shear multiplied of height of water coefficient (M/V_{h}) with normalized water height to tank length ratios (h/L) for various
ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 87

Fig 5.33: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M^*/V_e h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 87

Fig 5.34: Variation of the ratio between maximum hydrodynamic pressure in circumferential direction on tank wall to hydrostatic pressure (P_{max}/ \gamma_w h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 89

Fig 5.35: Variation of the ratio between maximum sloshing wave height to water height (d_{max}/h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Full tank condition) ... 91

Fig 5.36: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) Sd(Ti_e) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Empty tank condition) ... 91

Fig 5.37: Variation of static seismic coefficient (V_e/W_{con}) at the bottom of wall with normalized tank height (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Empty tank condition) ... 92

Fig 5.38: Variation of base moment divided by base shear multiplied of height of water coefficient (M_e/V_e h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Empty tank condition) ... 93

Fig 5.39: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M^*/V_e h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is C, (Empty tank condition) ... 94

Soil class D

Fig 5.40: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) Sd(T_i) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) ... 98

Fig 5.41: Variation of horizontal design spectrum for convective mode (For elastic structural analysis) Sd(T_c) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) ... 99

Fig 5.42: Variation of static seismic coefficient (V/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) ... 100

Fig 5.43: Variation of static seismic coefficient (V_e/W) under the base slab with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00,
1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) 101

Fig 5.44: Variation of base moment divided by base shear multiplied of height of water coefficient (M/V.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) .. 102

Fig 5.45: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M*/Vtc.h) with normalized tank height (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) ... 103

Fig 5.46: Variation of the ratio between maximum hydrodynamic pressure in circumferential direction on tank wall to hydrostatic pressure (Pmax/γw h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) .. 104

Fig 5.47: Variation of the ratio between maximum sloshing wave height to water height (dmax/h) with normalized tank height (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Full tank condition) .. 105

Fig 5.48: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) Sd(Tie) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Empty tank condition).............................. 106

Fig 5.49: Variation of static seismic coefficient (V/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Empty tank condition) .. 107

Fig 5.50: Variation of base moment divided by base shear multiplied of height of water coefficient (M/Vtc.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Empty tank condition) .. 108

Fig 5.51: Variation of overturning moment divided by total base shear multiplied of height of water coefficient (M*/Vtc.h) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is D, (Empty tank condition) .. 109

Soil class E

Fig 5.52: Variation of horizontal design spectrum for impulsive mode (For elastic structural analysis) Sd(Ti) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is E, (Full tank condition) .. 113

Fig 5.53: Variation of horizontal design spectrum for convective mode (For elastic structural analysis) Sd(Tc) with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00, 1.50, and 2.00). For response spectrum curve type 1 and 2, soil class is E, (Full tank condition) .. 114

Fig 5.54: Variation of static seismic coefficient (V/W) at the bottom of wall with normalized water height to tank length ratios (h/L) for various ratios (L/B = 0.50, 1.00,