

Assessment of Pile Integrity Utilizing Full-Scale Non-Destructive In-Situ Testing

By

Anwar Farouk Ibrahim El-Kadi

BSc. 1989, Ain Shams University MSc. 1997, ITC-The Netherlands

A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

Supervisors

Dr. Fathalla M. El-Nahhas

Professor of Geotechnical and Foundation Engineering Department of Structural Engineering Faculty of Engineering-Ain Shams University

Dr. Hossam-Eldin A. Ali

Associate Prof. of Geotechnical Eng. Dept. of Structural Engineering Faculty of Eng., Ain Shams University

Dr. Hesham M. Helmy

Lecturer of Geotechnical Engineering Dept. of Structural Engineering Faculty of Eng., Ain Shams University

CAIRO 2009

لا يزال المرء عالما ما طنب العلم فإن ظن أنه قد علم فقد جهل

طه حسين

APPROVAL SHEET

Thesis	: Doctor of Philosophy Degree in Civil Er (Structural Engineering Department)	ngineering
Student Name	: Anwar Farouk Ibrahim El-Kadi	
Thesis Title	: Assessment of Pile Integrity Utiliz	ing Full-
	Scale Non-Destructive In-Situ Tes	ting

EXAMINERS COMMITTEE

	Name, Title and Affiliation	Signature
1	Prof. Dr. Ing. Joachim Stalman	
	Professor of Geotechnical and Foundation Eng.	
	Braunschweig University	
2	Prof. Dr. Eng. Mona Mustafa Eid	
	Professor of Geotechnical and Foundation Eng.	
	Ain Shams University	
3	Prof. Dr. Eng. Fathalla M. El-Nahhas	
	Professor of Geotechnical and Foundation Eng.	
	Ain Shams University	

Date: February 18th, 2009

STATEMENT

This dissertation is submitted to Ain Shams University for the Doctor of Philosophy degree in Civil Engineering (Department of Structural Engineering).

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University from 2002 to 2009.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Date	:	February 18 th , 2009
Signature	:	
Name	:	Anwar Farouk Ibrahim El-Kadi

INFORMATION ABOUT THE RESEARCHER

Name	:	Anwar Farouk Ibrahim El-Kadi
Date of Birth	:	Jan. 30, 1964
Place of Birth	:	Aachen, Germany
Qualifications	:	B.Sc. Degree in Civil Engineering (Structural Engineer) Faculty of Engineering, Ain Shams University, Egypt (1989)
		Diploma in Geotechnical Engineering and Foundation, Ain Shams University, Egypt (1992)
		MSc. ITC-The Netherlands (1997)
Present Job	:	Vice President Project Management, Quality Assurance and Quality Control, NECB-MISR

Ain Shams University

Faculty of Engineering Structural Engineering Department

Abstract of PhD. thesis submitted by: Anwar Farouk Ibrahim El-Kadi Title of thesis: Assessment of Pile Integrity Utilizing Full-Scale

Non-Destructive In-Situ Testing

Supervisors:

Prof. Dr. Fathalla M. El-Nahhas

Associate Prof. Dr. Hossam-Eldin A. Ali

Dr. Hesham M. Helmy

Abstract

Sonic Integrity Testing (SIT) of piles is becoming a very important tool for pile construction quality control, mainly because it is quick, inexpensive and efficient in locating the major defects in a pile. This is referred to the booming in the construction industry leading to the extensive use of piles as foundation structural elements. SIT is a low strain method to characterize pile diameter changes by giving a relation between the pile head velocity versus time and/or depth, interpretation of the results are based on the one-dimensional stress wave theory and require experienced personnel for proper interpretation. SIT is having its limitations in locating some discontinuities (diameter changes) of smaller area/volume relative to the pile cross-sectional area; this is referred to the impact method (impact length) and impact area.

This research is mainly focusing on the effect of using a mechanical hand held hammer and investigating innovative tools for improving the quality of the resulting waves leading to a better and easier identification of the more difficult discontinuities. For this purpose, seven reinforced concrete model piles of the dimensions 35x35x500cm and concrete strength of 25MPa were prepared and tested to represent the different possible construction defects. Also in

this research, a trial was made to utilize the Artificial Neural Networks (ANN) in the interpretation process of the results of SIT.

The research results show that the utilization of a mechanical hand held hammer was very useful to simplify the testing procedure and giving an accuracy and quality in the same range of the conventional hand held hammers with no improvement on the resulting wave quality. At the same time, mechanical hammer combined with contact plates of different configurations resulted in the following main outcomes:

- 1. Increase of impact area producing shorter wave lengths
- 2. Generally better wave quality, and easier to interpret
- 3. A closer match of testing outcome with the theoretical approach

The new introduced methods of impact using a mechanical hammer and a contact plate in its different configurations minimize the difference between the actual testing procedure and the basis of the utilized theoretical tools used for its interpretation.

To overcome the essential need for an experienced interpreter of the test results, trials were made in this research to use ANN in the interpretation of the resulting waves. Very good training results were achieved. However, testing did not lead to the same quality of the training phase. This is referred to the many possibilities of real piles testing results depending on the concrete quality, testing quality, location of defect, and many possible soil configurations. Available possible to use networks might need further developments in order to be able to handle such complex excessive ranges of data. Maybe then, a better chance of creating an interpretation model could be possible.

After thanking **ALLAH** for giving me the strength to complete this thesis, I would like to thank first of all **Prof. Fathalla M. El-Nahhas** for his continuous fruitful advise and strong support, without which this thesis would have never come out in this final form.

I also would like to thank my supervisors, **Dr. Eng. Hossam Aly** and **Dr. Eng. Hesham Helmy** for their assistance during the research steps.

My deep appreciation for **Mr. Peter Middendorp** and **Mr. Schellingerhout** from Profound, the Netherlands for the time and ideas they gave during the research period that very much helped me finish the thesis.

I should also use the opportunity and thank **my parents** for their efforts raising me and educating me becoming a capable person to go forward in my professional life.

Last but not least I would like to thank my **wife** and **kids** for their assistance providing me with the required environment and assistance to finalize the thesis, and for their understanding that was one of the main reasons to reach this stage of my professional life.

Many thanks, to my **Father Prof. Dr. Ing. Farouk El-Kadi** who raised me to be whom I am in all respects, socially, educationally and professionally.

Anwar Farouk El-Kadi February, 2009

Table of Contents

Abstrac Table o List of T List of F Notatic	et f Contents Fables Figures ons	I III VI VII XIX
CHAP	FER 1: INTRODUCTION	
1.1	l General	1
1.2	2 Statement of the Problem	5
1.3	B Purpose and Scope of the Study	6
1.4	4 Outline of the Thesis	6
CHAP	FER 2: SONIC INTEGRITY TESTING	
BACK	GROUND AND REVIEW	
2.1	Introduction	8
2.2	Local Experience in Egypt:	14
2.2	2.1 Testing:	14
2.2	2.2 Testing procedure:	15
2.2	2.3 Interpretation procedure:	16
2.2	2.3.1 Qualitative interpretation	17
2.2	2.3.2 Quantitative interpretation	18
2.3	Typical Defects Detected by Sonic Integrity Testing:	18
2.4	Limitations of Sonic Integrity Testing:	21
CHAPTER 3: THEOETICAL BACKGROUND		
3.1	Introduction	25
3.2	One Dimensional Wave Theory	27
3.3	Newton's Second Law	27
3.4	Hooke's Law	27
CHAP	TER 4: TESTING PROGRAMS ON FULL-SCALE PI MODEL PILES	LES AND
4.1	Introduction	33

4.2	Testing Hammers	34
4.3	Testing Program on Full-Scale Piles	37
4.4	Test Configurations:	40
4.5	Evaluation of Results of Testing Full-Scale Piles:	41
4.6	Testing Program of Model Piles	42
	4.6.1 Configuration of model piles	42
	4.6.2 Casting of model piles	46
	4.6.3 Testing of model piles	50
CHAP	TER 5: TEST RESULTS	
5.1	Case 1: Sound Pile with No Defects	60
5.2	Case 2: Defected Pile with Necking	69
5.3	Case 3: Defected Pile with Crack and Necking	76
5.4	Case 4: Defected Pile with Enlargement	85
5.5	Case 5: Double defected Pile with Crack and Enlargement	92
5.6	Case 6: Defected Pile with Crack	101
5.7	Case 7: Defected Pile with a Void	110
5.8	Case 8: Defected Pile with Enlargement & Necking	120
5.9 Necl	Case 9: Defected Pile with Triple Defects) Crack, Enlargem king)	ent & 127
5.10	Case 10: Defected Pile with gradual Enlargement	136
CHAP	TER 6: ANALYSIS AND EVALUATION	
6.1	Introduction	144
6.2	Data Reduction	145
6.3	Data Analysis and Evaluation	161
CHAP	TER 7: ARTIFICIAL NEURAL NETWORKS	
7.1	Introduction	168
7.2	Historical Background	170
7.3	The Biological Model	171
7.4	ANN Architecture	172

Feed-forward networks	173	
Feedback networks	174	
Mathematical Model	174	
Training	176	
Data Preparation	177	
7.10 Results		
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS		
Conclusions	198	
Recommendations	199	
List of References		
Appendix A: Results of Integrity Testing of Full-Scale Piles		
	Feed-forward networks Feedback networks Mathematical Model Training Data Preparation Results TER 8: CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations References dix A: Results of Integrity Testing of Full-Scale Piles	

Appendix B: Data Assessment of Selected Model Piles with Different Defects

LIST OF TABLES

Table	Title	Page
2.1	Quantitative classification of test results	17
4.1	Sites used for verification testing	36
4.2	Summary geotechnical data for some	38
	chosen sites	
4.3	Different design mixes proposed for the	46
	model piles	

LIST OF FIGURES

Figure	Title	Page
2.1	FPDS–0 system, Profound SIT Manual, 2004 (Middendorp, P, and Van Foeken)	8
	R.J. 1997)	
2.2	Signals resulting from FPDS-0 systems,	9
	Profound SIT Manual, 2004	
	(Middendorp, P. and Van Foeken, R.J.	
	1997)	
2.3	Latest available equipment from Profound	9
	(Holland), Profound SIT Manual, 2004	
	(Manual, Profound 2004)	
2.4	Example of the method of presenting the	10
	test results (FPDS-7), Profound SIT	
	Manual, 2004 (Manual, Profound 2004)	
2.5	Purpose of pile integrity testing in	11
	EGYPT	
2.6	Purpose of Pile Integrity Testing in	12
	Germany (Klingmueller and Kirsch 2004)	
2.7	Procedures followed during testing and	13
	assessment to lead to one of the three	
	classes (Based on local experience)	
2.8	SIT Testing Equipment	14
2.9	Typical Integrity Testing Wave with	18
	necking (Profound Manual, 2004)	
2.10	Typical Integrity Testing Wave with	19
	bulging (Profound Manual, 2004)	10
2.11	Typical Integrity Testing Wave with	19
0.10	crack (Protound Manual, 2004)	20
2.12	Typical Integrity Testing Wave with	20
2 1	Intercalation (Profound Manual, 2004)	25
3.1	Wave-front of compression, Shear and	25
	Rayleign produced by a point impact on a	
2 2	Surface	25
5.2	Compression wave refrects at the incident	23
	incident wayes angle	
3 3	Cylindrical bar loaded at one and (Graf	26
5.5		20
34	Free End Pile (Van Ginneken	28
5.1	The Line I ne () wit Officient,	20

	Middendorp, Meijer and Allen, 2001)	
3.5	Fixed End Pile (Van Ginneken.	28
	Middendorp, Meijer and Allen, 2001)	
3.6	Wave path along a sound pile with no	29
	cross-sectional variation (Free end pile)	
	(Van Ginneken Middendorp Meijer and	
	Allen 2001)	
37	Wave path along a sound pile with no	29
5.1	cross-sectional variation (Fixed end nile)	
	(Van Ginneken Middendorn Meijer and	
	Allen 2001)	
38	Wave nath along a free end nile with	29
5.0	cross-sectional reduction (Van Ginneken	2)
	Middendorn Meijer and Allen 2001)	
30	Wave path along a fixed end pile with	30
5.7	cross-sectional increase (Van Ginneken	50
	Middendorp Meijer and Allen 2001)	
2 10	Wave path along a free and pile with	20
5.10	areas sostional packing (Van Ginnakan	30
	Middendorn Meijer and Allen 2001)	
2 1 1	Wave noth along a free and nile with	20
5.11	wave path along a nee end pile with	30
	Cincelon Middender Mailer and Aller	
	Onneken, Middendorp, Meijer and Allen,	
4 1	2001) 175 grow however Decommonded by	22
4.1	1/5 gram nammer Recommended by	33
4.2	100 gram hammar Dagarnen andad hu	22
4.2	400 gram nammer Recommended by	33
4.2	manufacturers	22
4.3	/ougram nammer Recommended by	33
4 4		24
4.4	Schmidt Hammer, raw mechanical	34
4.5	hammer proposed by author	2.4
4.5	Schmidt Hammer mechanism	34
4.6	Blue (stiff) head for Schmidt hammer use	35
4.7	White (soft) head for Schmidt hammer use	35
4.8	Brown (medium) head for Schmidt	35
	hammer use	~ -
4.9	On site testing using Schmidt hammer	35
	and blue head	
4.10	Configurations of integrity testing of piles	39
	for present study	_
4.11	Reference model pile with no defects	42

4.12	Model Pile with necking	42
4.13	Model Pile with enlargement	43
4.14	Model Pile with a Crack	43
4.15	Model Pile with an Air Void	44
4.16	Model Pile with double defect: Necking	44
	& Enlargement	
4.17	Model Pile with gradual enlargement	45
4.18	Steel forms for Model Piles	45
4.19	Preparation boxes for concrete mix	46
	quantities	
4.20	Manually fed concrete mixing batch used	46
	for concrete casting	
4.21	Model pile after casting and during mold	47
	dismantling	
4.22	Model pile broken after casting	47
4.23	Model pile wooden formwork and false-	47
	work reinforced and ready for casting	
4.24	Model pile wooden formwork and false-	48
	work reinforced during casting	
4.25	Second set model piles after casting and	48
	molds dismantling	
4.26	Testing model piles using traditional hand	49
	held hammers	
4.27	Testing model piles using prepared hand	49
	held mechanical hammer	
4.28	Impact plunger before threading	50
4.29	Impact plunger after threading	50
4.30	Hammer mass after threading and	50
	installation of the extra bolt and lock nut	
4.31	Hammer mass after threading and	50
	installation of the extra bolt and lock nut	
4.32	Hammer head prepared out of white	51
	teflon (soft)	
4.33	Hammer head prepared out of black	51
	teflon (medium hard)	
4.34	Standard hammer head prepared of nylon	51
	(hard)	
4.35	Blue nylon head attached to the	52
	mechanical hammer	
4.36	Steel plate with an attached ball	53
4.37	Steel plate with a flat surface	53
4.38	Device used for ball impact horizontally	53