Obesity Associated POMC Gene Polymorphism: Relation to Metabolic Profile and Eating Habits in Obese Egyptian Children

Thesis

Submitted for Partial Fulfillment of MD Degree in Pediatrics

By

Rana Abd El Hakim Ahmed Mahmoud

M.B.B., Ch., - M.Sc. Faculty of Medicine, Ain Shams University

Under Supervision of

Professor Farida ElBaz Mohamed ElBaz

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Professor Rasha Tarif Hamza

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Professor Nermine Hussein Amr

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Assistant Prof. Dr. Azza Mohammed Youssef

Assistant Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Tarek Mostafa Kamal

Associate Consultant for Human Genetics Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

I would like to express my deepest appreciation, respect and thanks to **PROF. DR. FARIDA ELBAZ MOHAMED ELBAZ**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous guide in all aspects of life beside her great science, knowledge and information. It has been a great honor for me to work under her generous supervision

Great words really needed to express my gratitude, sincere appreciation and respect to **PROF. DR. RASHA TARIF HAMZA**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, who continued to provide me her guidance ever since. Without her great help, teaching and supervision, this work would not have been completed.

No words can express my deep sincere feelings Towards **PROF**. **DR. NERMINE HUSSEIN AMR.** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her continuous encouragement, guidance and support she gave me throughout the whole work. It has been a great honor for me to work under her generous supervision.

I would also like to thank **ASSISTANT PROF. DR. AZZA MOMAMMED YOUSSEF,** Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University for providing me with very valuable and constructive suggestions, for her support and encouragement.

I would like to offer my special thanks and deep appreciation to **DR. TAREK MOSTAFA KAMAL**, Associate Consultant for Human Genetics, Faculty of Medicine Faculty of Medicine, Ain Shams University, for his help and valuable advice throughout the performance of this work.

Also i would like to thank the patients and their parents who were very cooperative and helpful.

Last but not least, sincere gratitude to **My Family** for their continuous encouragement and spiritual support.

Contents

Subjects	Page
List of abbreviations List of Figures List of Tables	II VII X
• Introduction	1
Aim of the Work	
Review of Literature	
• Chapter (1): Definition of Obesity	4
 Chapter (2): Weight, Energy Homeostasis Neuroendocrine Control 	and 7
Chapter (3): Risk Factors of Obesity	14
Chapter (4): Assessment of Genetic Obesit	y60
 Chapter (5): Management of Genetic Cause Obesity 	es of 73
Subjects and Methods	
• Results	
• Discussion	140
• Summary	
• Conclusions	
Recommendations	171
• References	
Arabic Summary	

List of Abbreviations

: Adrenocorticotropic hormone ACTH ADRB2 : Adrenergic receptor beta-2 AGRP : Agouti-related peptide ALT : Alanine Aminotransferase APOA2 : Apolipoprotein A-II AR : Adiposity rebound β-END : β-endorphin BBS : Bardet-Biedl syndrome BED : Binge eating disorder BMI : Body mass index CART : Cocaine and amphetamine-regulated transcript CDC : Centers for Disease Control and Prevention CF : Complementary foods CLIP : Corticotropin-like intermediate peptide CNS : Central nervous system CRH : Corticotrophin-releasing hormone **CVD** : Cardiovascular disease DEXA : Dual-energy X-ray absorptiometry DNA : Deoxyribonucleic acid : Food and Drug Administration FDA

FISH	: Fluorescence in situ hybridization
GABA	: Gamma-aminobutyric acid) enhancer
GDM	: Gestational diabetes mellitus
GH	: Growth hormone
GLP-1	: Glucagon-like peptide-1
GNB3	: Guanine nucleotide binding protein beta
	polypeptide 3
GWA	: Genome-wide association
GWAS	: Genome-wide association study
HDL	: High density lipoproteins.
HOMA-IR	: Homeostasis model assessment for insulin
	resistance
HPA	: Hypothalamic–pituitary–adrenal
HPT	: Hypothalamic–pituitary–thyroid
IDF	: International Diabetes Federation Criteria
IDM	: Infant diabetic
IL	: Interleukin
IML	: Intermediolateral cell column
IOM	: Institute of medicine
IOTF	: International Obesity Task Force
IR	: Insulin resistance

IRS	: Insulin receptor substrate
kb	: Kilobase
LDL	: Low density lipoprotein
LEP	: Leptin
LEPR	: Leptin receptor
LOC	: Loss of control
LPH	: Lipotropin lipotropic hormone
LPL	: Lipoprotein lipase
LPS	: Lipopolysaccharides
LRPAP1	: Low-density lipoprotein receptor-related protein
	associated protein
LV	: Left ventricle
MCR3	: Melanocortin-3 receptor
MCR4	: Melanocortin-4 receptor
Mod-OB	: Moderate obesity
mRNA	: Messenger ribonucleic acid
MS	: Metabolic syndrome
MSH	: Melanocyte-stimulating hormone
NAFLD	: Nonalcoholic fatty liver disease
NASH	: Nonalcoholic steatohepatitis
NPC1	: Niemann-Pick disease, type C1

NPY	: Neuropeptide Y
OGTT	: Oral glucose tolerance test
OHS	: Obesity-hypoventilation syndrome
OSA	: Obstructive Sleep Apnea
OW	: Overweight
PC1/PC2	: Proconvertase
PCR	: Polymerase chain reaction
PEFR	: Peak expiratory flow rate
PLIN1	: Perilipin 1
POMC	: Preproopiomelanocortin
Pon3	: Paraoxonase 3
ΡΡΑR -γ	: Peroxisome proliferator-activated receptor gamma
PPARG	: Peroxisome proliferator-activated receptor- γ
PVN	: Paraventricular nucleus
PWS	: Prader-Willi syndrome
РҮҮ	: Peptide YY
QOL	: Quality of life
SAGES	: Society of American Gastrointestinal Endoscopic
	Surgeons
SCFA	: Short chain fatty acids
SCFE	: Slipped capital femoral epiphysis
SDS	: Standard deviation score

SES	: Socio-economic status
Sev-OB	: Severe obesity
SIM1	: Single-minded gene
T2DM	: Type 2 diabetes mellitus
TBC1D1	: TBC1 domain family member 1
ТС	: Total cholesterol,
TNF α	: Tumor necrosis factors alpha
TRH	: Thyrotropin-releasing hormone
TV	: Television
UCP1	: Uncoupling protein-1
US	: United States
WC	: Waist circumference
WHO	: World Health Organization
WHR	: Waist hip ratio

List of Figures

No.	<u>Figure</u>	Page
1	Body mass index-for-age percentiles, boys, 2 to 20 years, CDC growth charts: United States.	5
2	Body mass index-for-age percentiles, girls, 2 to 20 years, CDC growth charts: United States.	6
<u>3</u>	Orexigenic neuropeptide Y (NPY)/agouti- related peptide (AGRP) versus anorexigenic proopiomelanocortin (POMC)/cocaine and amphetamine-regulated transcript (CART)- containing neurons.	8
4	The hypothalamic melanocortin system.	10
5	Hypothalamic control of global energy balance.	13
<u>6</u>	Risk factors for obesity.	14
7	The different types of childhood obesity based on distinct genetic and phenotypic characteristics.	18
<u>8</u>	Extended Data Table 2: List of genes with single nucleotide polymorphisms associated with human obesity.	22
<u>9</u>	POMC gene Mapping.	27
<u>10</u>	The breakdown of POMC by prohormone convertase enzymes (PC1 and PC2) into melanocortins and B-endorphin.	29
<u>11</u>	Biosynthesis of ACTH and its regulation by the HPA axis.	30
<u>12</u>	Different POMC polymorphisms associated with obesity phenotypes.	34
<u>13</u>	The polymorphism consisting of the 9-bp insertion, AGC AGC GGC, between nucleotides 6997 and 6998 leads to the	36