Water and Sodium Status in Critically Ill Children after Acute Central Nervous System Injury

Chesis

Submitted for partial fulfillment of Master degree in **Pediatrics**

By

Maha Ayman Abou Hadid

M.B.B.Ch., Ain-Shams University

Under the Supervision of

Prof. Dr. Tarek Ahmed Abdel Gawad

Professor of Pediatrics Faculty of Medicine Ain-Shams University

Prof. Dr. Samia Abdel Wahed Boseila

Professor of Pediatrics Child Health Department National Research Centre

Dr. Mervat Gamal El-Dine Mansour

Assistant Professor of Pediatrics Faculty of Medicine Ain-Shams University

> Faculty of Medicine Ain Shams University 2012

التغيرات في مستوى الماء والصوديوم بالجسم في الأطفال مرضي الحالات الحرجة بعد الاصابة الحادة في الجهاز العصبي المركزي

رسالة

توطئة للحصول علي درجة الهاجيستير في طب الأطفال

> مقرمة من (لطبيبة مها أيمن فريد أبو حديد

> > تحت (شرراف

الأستاذة الدكتورة/ سامية عبد الواحد بصيلة

> أستاذ باحث صحة الطفل المركز القومي للبحوث

الأستاذ الدكتور/ طارق أحمد عبد الجواد

أستاذ طب الأطفال كلية الطب – جامعة عين شمس

الدكتـورة/ مرفت جمال الدين منصور أستاذ مساعد طب الأطفال جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٢

Summary

Fluid and electrolyte disturbances are commonly seen in children after acute central nervous system (CNS) injury. Cerebral salt wasting syndrome, inappropriate secretion of anti-diuretic hormone and central diabetes insipidus are frequently observed disorders after acute CNS insults (Loh et al., 2000 - Ferry et al., 2001- Taplin el al., 2006).

This study aimed to assess water and sodium homeostasis in critically ill children who were subjected to acute central nervous system insults such as: CNS infections (Encephalitismeningitis and brain abscess)- Hypoxic ischemic insults - Intracranial haemorrhage and Status epilepticus.

The study included 31 critically ill children ranging from 1 month to 6 years old with mean age 1.69 ± 2.07 years who were subjected to acute central nervous system insults.

Thirteen (41.9%) of the studied cases did not have any changes in their serum sodium levels after acute central nervous system insult, whereas 8 patients (25.8%) have become hyponatremic, 3 patients)9.7%(of them were diagnosed as cerebral salt wasting syndrome, while 5 patients (16.1%) were hyponatremic due to other causes mainly SIADH. Ten patients (32.3%) have become hypernatremic after acute central nervous systm insult, 6 of them (19.4%) were due to confirmed central diabetes insipidus, while the other 4 patients (12.9%) had unconfirmed central diabetes insipidus.

First and foremost, I feel always indebted to **Allah**, the most kind and the most merciful.

I would like to express my sincere gratitude to **Prof. Dr. Tarek Ahmed Abdel Gawad,** Professor of Pediatrics Faculty of Medicine Ain-Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

I wish also to express my gratitude to **Prof. Dr. Samia Abdel Wahed Boseila,** Professor of Pediatrics, Child Health Department, National Research Centre, for her great efforts, kind advice, support and encouragement throughout the whole work.

I am also greatly indebted to **Dr. Mervat Gamal El-Dine Mansour,** Assistant Professor of Pediatrics, Faculty of Medicine, Ain-Shams University for her tremendous effort she has done, enthusiasm and help.

I would like also to thank the whole members of Pediatric ICU department (doctors and nurses) in El-Demerdash Hospital, and all my colleagues for their true support.

I would like also to extend my thanks to **Dr. Alaa Nagy** and **Dr. Mona El-Kafoury** for their efforts in the practical part of this work.

I would like to dedicate this thesis to my Great (Father, and Sunshine Mother; for whom I will never find adequate words to express my gratitude.

Contents

	Page No.
List of Abbreviations	<i>i</i>
List of Tables	<i>ii</i>
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Acute Central Nervous System Insults in Pe	
Normal Water and Sodium Homeostasis	19
Water and Sodium Balance Disturbances	31
Subjects and Methods	56
Results	
Discussion	99
Conclusion	113
Summary	114
Recommendations	117
References	118
Arabic Summary	-

List of abbreviations

ACTH : Adreno-cortico trophic hormone

: Anti-diuretic hormone **ADH** ALT : Alanine transaminase **ANP** : Atrial natriuretic peptide : Aspartate transaminase **AST ATP** : Adenosine tri-phosphate AVP : Arginine vasopressin : Blood brain barrier **BBB BNP** : Brain natriuretic peptide BUN : Blood urea nitrogen

CA : Cardiac arrest

CBC : Complete blood count
CDI : Central diabetes insipidus
CNP : C-type natriuretic peptide
CNS : Central nervous system

CPR : Cardio-pulmonary resuscitation

CSF : Cerebrospinal fluid
 CSW : Cerebral salt wasting
 CT : Computerized tomography
 CVP : Central venous pressure

D1 : Day 1 **D5** : Day 5

dDAVP : Desmopressin

DIDMOAD: Diabetes insipidus, diabetes mellitus, Optic atrophy, Deafness

DKA : Diabetic keto acidosis

EABV : Effective arterial blood volume

ECF : Extra cellular fluidEEG : Electro encephalogram

ELISA : Enzyme-linked immunosorbent assay

GCS : Glascow coma score

H⁺ : Hydrogen H₂O : Water

HIE : Hypoxic-ischemic encephalopathy

HSV : Herpes simplex virus ICF : Intra cellular fluid

ICHge : Intra-cranial hemorrhage

IV : Intra-venousK : Potassium

MAP
mEq/L
Milli equivalent per liter
Mg/dl
Milligram per deciliter
mmHg
milli meters mercury
Milli mol per liter

MRA : Magnetic resonance arteriographyMRI : Magnetic resonance imaging

MV : Mechanical ventilation

Na : Sodium

NaCl : Sodium chloride

NICU : Neurological intensive care unit PCR : Polymerase chain reaction

PELOD : Pediatric logistic organ dysfunction

Pg/ml : Pico gram per milliliter
PICU : Pediatric intensive care unit

RAAS : Renin-Angiotensin-Aldosterone system

S : Serum

SD : Standard deviationSE : Status epilepticus

SIADH : Syndrome of inappropriate secretion of anti-diuretic hormone

SIDS : Sudden infant death syndrome

U : Urine

List of Tables (Review)

Eable N	o. Eitle	Page No.
Table (1):	Common Causes of Hypotonic Hyponatremia in the ICU	34
Table (2):	Clinical and biochemical findings in patients with DI, SIADH, and salt wasting	
Table (3):	PELOD score	59

List of Tables (Results)

Eable No	. Eitle Page No.
Table (1):	Description of personal and medical characteristics of all studied cases
Table (2):	Clinical characteristics of all studied cases67
Table (3):	Laboratory data of studied cases
Table (4):	Routine laboratory data among study casesdone at day 1
Table (5):	Distribution of study groups according to serum sodium levels after acute CNS insults:
Table (6):	Follow up of serum sodium levels (from day 1 till day 5) in the three study groups:72
Table (7):	Description of the laboratory characteristics of the three studied groups at day 1:73
Table (8):	Description of the laboratory characteristics of the three studied groups at day 5:74
Table (9):	Comparison of the clinical characteristics in isonatremic and hyponatremic groups:75
Table (10):	Comparison of the clinical characteristics in isonatremic and hypernatremic groups:75
Table (11):	Comparison of the clinical characteristics in hyponatremic and hypernatremic groups:76
Table (12):	Laboratory characteristics at day 1 in isonatremic and hyponatremic groups82
Table (13):	Laboratory characteristics at day 1 in isonatremic and hypernatremic groups83
Table (14):	Laboratory characteristics at day 1 in hyponatremic and hypernatremic groups84

Table (15):	Laboratory characteristics at day 5 in isonatremic and hyponatremic groups	85
Table (16):	Laboratory characteristics at day 5 in isonatremic and hypernatremic groups	86
Table (17):	Laboratory characteristics at day 5 in hyponatremic and hypernatremic groups	87
Table (18):	Laboratory and clinical parameters at day 1 and day 5 in isonatremic cases	91
Table (19):	Clinical and laboratory parameters at day 1 and day 5 in hyponatremic cases	92
Table (20):	Laboratory and clinical parameters at day 1 and day 5 in hypernatremic cases	93
Table (21):	Correlations between serum sodium level and other demographic, clinical and outcome variables at day 1.	95
Table (22):	Correlations between serum sodium level and other demographic, clinical and outcome variables at day 5.	96

List of Figures (Review)

Cable No	v. Eitle Page No.
Figure (1):	Regulation of extracellular fluid osmolality and volume
Figure (2):	Na/K-ATPase activity
Figure (3):	Responses to changes in plasma osmolality23
Figure (4):	Anatomy of the hypothalamic-pituitary axis23
Figure (5):	Responses to changes in blood pressure and effective extracellular fluid volume
Figure (6):	Effects of vasopressin
Figure (7):	Effect of the renin-angiotensin system27
Figure (8):	Stimulants and effects of aldosterone secretion 27
Figure (9):	Activities of A-type natriuretic peptide (ANP)30
Figure (10):	Differential Diagnisis of Hyponatremia with high urinary Sodium
Figure (11):	Triphasic response of antidiuretic hormone47

List of Figures (Results)

Eable No	. Eitle	Page No.
Figure (1):	Gender Distribution in the studied group	o66
Figure (2):	Causes of central nervous system insult.	66
Figure (3):	Different study groups according to se sodium level.	
Figure (4):	Different study subgroups according serum sodium level	
Figure (5):	Different serum sodium levels among three study groups.	
Figure (6):	Weight for age in the three studied group	ps78
Figure (7):	Mechanically ventilated patients at da and day 5	•
Figure (8):	Mortality in the studied groups	79
Figure (9):	Glascow coma score levels at day 1 day 5.	
Figure (10):	Central venous pressure grades at day 1.	80
Figure (11):	Central venous pressure grades at day 5.	81
Figure (12):	Duration of stay in the pediatric intensicare unit.	
Figure (13):	Serum sodim levels at day 1 and day the 3 studied groups	

Figure (14):	Serum ADH levels at day 1 and day 5 in the 3 studied groups	.88
Figure (15):	Serum osmolality levels at day 1 and day 5 in the 3 studied groups	.89
Figure (16):	Urine sodium levels at day 1 and day 5 in the 3 studied groups	.89
Figure (17):	Sodium balance levels at day 1 and day 5 in the 3 studied groups	.90
Figure (18):	Serum ADH levels at day 1 compared to day 5 in the three study groups	.94
Figure (19):	Correlation between serum sodium and serum osmolality at day 1 from CNS insult	.97
Figure (20):	Correlation between serum sodium and serum osmolality at day 5 from CNS insult	.98