Evaluating Diagnostic Significance of Magnifying Narrow Band Imaging Endoscopy in Various Gastric Lesions

Thesis

Submitted for the partial fulfillment of the M.D. degree in Internal Medicine

By

Ayman Gamil Anwar

M.B.B.Ch., M.Sc. Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Yehia Mohamed El Shazly

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Ali Moanis

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Mohammed Abd El Moghny Mostafa

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Nanees Ahmed Adel Abd Elhmageed

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. George Safwat Riad

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First of all, I'm so thankful to **GOD** for helping me complete this work.

I'm extremely grateful to **Prof. Dr. YEHIA Mohamed EL**. Shazly; Professor of internal medicine, Ain Shams University; for his kind supervision, valuable guidance and continuous encouragement.

I express my deepest gratitude to **Prof. Dr Ahmed Ali Moanis,** Professor of hepatology and gastroenterology, Faculty of Medicine, Ain Shams University, for his sincere guidance and help.

Also, I wish to express my thanks and deep gratitude to **Dr Mohammed Abd El Moghny,** Assistant Professor of hepatology and gastroenterology, Ain Shams University, for his support, great help and continuous and valuable directions.

I gratefully acknowledge **Dr Nanees Ahmed Adel Abd Elmageed,** Assistant Professor of hepatology and gastroenterology, Faculty of Medicine, Ain Shams University, for her support, great help and continuous and valuable directions.

I am very grateful to **Dr. George Safwat Riad,** Assistant Professor of hepatology and gastroenterology, Faculty of Medicine, Ain Shams University, for his valuable guidance and continuous encouragement.

Words fail to express my sincere gratitude to **Dr. Hossam Ghoneim**, Lecturer of Tropical M edicine, Bany Sueif University, For his great help and encouragement. Without his support, I would not have completed this work.

Last but not the least, I want to thank **My Family** for their great love and support, which always puts me on the right way of life.

Ayman Gamil

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
- Advances in Upper G.I. Endoscopy	4
- Clinical Application of Magnification Nar Imaging Endoscopy	row-band 57
- Gastric Lesions	80
Patients and Methods	140
Results	145
Discussion	159
Summary	167
Conclusion and Recommendation	169
References	
Arabic Summary	—

List of Appreviation

AMSP	: Absent microsurface pattern
BEGPs	: Benign epithelial gastric polyps
B-RTO	: Balloon-occluded retrograde transvenous obliteration
CCD	: Charge-coupled device
CE	: Contrast enhancement
CLE	: Confocal laser endomicroscopy
CS	: Cowden's syndrome
СТ	: computed tomography
C-WLE	: Conventional white light endoscopy
EC	: Early carcinoma
EGF	: Epidermal growth factor
EIS	: Endoscopic injection sclerotherapy
EMR	: Endoscopic mucosal resection
ERCP	: Endoscopic reyrograde cholangiopancreatography
ES	: Endoscopic Sclerotherapy
ESD	: Endoscopic submucosal dissection
EUS	: Endoscopic ultrasound
EVL	: Endoscopic variceal ligation
FAP	: Familial adenomatous polyposis
FGPs	: Fundic gland polyps
FNA	: Fine-needle aspiration
GAVE	: Gastric antral vascular ectasia
GISTs	: Gastrointestinal stromal tumours
GOV	: Gastroesophageal varices
H. pylori	: Helicobacter pylori
HDGC	: Hereditary Diffuse Gastric Cancer
HGD	: High-grade dysplasia
HHT	: Hereditary haemorrhagic teleangiectasia
IF	: intrinsic factor
IFPs	: Inflammatory fibroid polyps
IGV	: Isolated gastric varices
IM	: Intestinal metaplasia

i

List of Appreviation (Cont...)

IMSP	: Irregular microsurface pattern
IMVP	: Irregular microvascular pattern
IPCLs	: Intrapapillary capillary loops
LBC	: Light-blue crest
MALT	: Mucosa-associated lymphoid tissue lymphomas
MEN1	: Multiple endocrine neoplasia type 1
ME-NBI	: Endoscopy: magnifuing Narrow-band imaging endoscopy
MS	: Microsurface
MV	: Microvascular
NBI	: Narrow-band imaging
NIEC	: New Italian Endoscopic Club
NPV	: Negative Predictive Value
NSAIDs	: Non steroidal anti-inflammatory drugs
PHG	: Portal hypertensive gastropathy
PJS	: PeutzeJeghers' syndrome
PPV	: Positive predictive value
RMSP	: Regular microsurface pattern
RMVP	: Regular microvascular pattern
SE	: Surface enhancement
SECN	: Subepithelial capillary network
Sn	: The sensitivity
Sp	: Specificity
SPSS	: Statistical Package for Social Sciences
TE	: Tone enhancement
TIPS	: Transjugular portosystemic shunt
TNF	: Tumor necrosis factor
VS	: Vessel plus surface classification system

ii

List of Tables

Table No	o. Title F	Page	No.
Table (1):	The Vessel plus surface classification s based on basic principal microana findings for making a correct diag between noncarcinomatous and carcinom lesions in the gastrointestinal tract	ystem tomic gnosis natous	66
Table (2):	Categories of vascular malform according to anatomic and pathophysiolo principles	ations ogical	95
Table (3):	Baveno scoring system for portal hyperte gastropathy	ensive	106
Table (4):	Other systems used for classification of hypertensive gastropathy	portal	106
Table (5):	Number and percentage of different g lesions in the current study by conven light endoscopy	gastric tional	145
Table (6):	The relation between the NBI findings an histopathological findings in cases of ga as regard the detection of dysplasia or carcinoma	nd the stritis early	147
Table (7):	The relation between the NBI findings an histopathological findings in cases with as regard the detection of dysplasia or carcinoma	nd the ulcer early	149
Table (8):	The relation between the NBI findings an histopathological findings in cases with as regard the detection of dysplasia or carcinoma	nd the polyp early	151

iii

List of Tables (Cont ...)

Table No	o. Title	Page	No.
Table (9):	The relation between the NBI findings histopathological findings in cases with mass as regards the detection of dysp early carcinoma	and the n gastric lasia or	154
Table (10):	The relation between the Light end findings and histopathology in differen lesions as regards the detection of dysp malignancy.	doscopy t gastric blasia or	155
Table (11):	The relation between the NBI findings histopathological findings in different lesions as regards the detection of dysp early carcinoma	and the gastric blasia or	156
Table (12):	The sensitivity, specificity, PPV and the magnifying NBI endoscopy in d presence of dysplasia or neoplasia in de and elevated gastric lesions	NPV of etecting epressed	156
Table (13):	The accuracy, sensitivity, specificity, F NPV of the magnifying NBI endose detecting presence of dysplasia or neop different gastric lesions	PPV and copy in plasia in	158

iv

List of Figures

Figure N	o. Title	Page	No.
Figure (1):	Kussmaul testing the gastroscopy in a swallower, 1868	a sword	5
Figure (2):	Mikulicz's oesphagoscopy, 1881	•••••	6
Figure (3):	Types of Forceps	•••••	13
Figure (4):	EUS detecting small pancreatic tumor.	•••••	15
Figure (5):	Heater probe	•••••	19
Figure (6):	Simultaneous application of heat and j (coaptive coagulation).	pressure	20
Figure (7):	The metallic clip	•••••	23
Figure (8):	Endoscopic snare polypectomy	•••••	25
Figure (9):	Dilators used for esophageal dilation Savary dilator; (B) Maloney dilator through-the-scope dilator	on: (A) or; (C)	26
Figure (10):	The distal tip of the confocal endomic contains the scan mechanism and the c imaging window.	roscope confocal	36
Figure (11):	Videoendoscopic and endomicroscopic are displayed simultaneously	images	37
Figure (12):	Schematic of confocal endomic principles	roscopy	38
Figure (13):	Positioning of the confocal microscope	• • • • • • • • • • • • • • • • • • • •	41
Figure (14):	NBI system.	•••••	48
Figure (15):	The squamo-columnar junction	•••••	59
Figure (16):	Normal MV architecture in the esophage	gus	61

v

List of Figures (Cont ...)

Figure N	o. Title	Page	No.
Figure (17):	Endoscopic images of noninvasive SC esophagus	CC in the	63
Figure (18):	Endoscopic images of invasive SCC esophagus.	C in the	63
Figure (19):	Representative magnified endoscopi with NBI of nondysplastic Barrett's ep according to the VS classification system	c views oithelium em	65
Figure (20):	Representative magnified endoscopic with NBI of HGD or EC in epithelium according to the VS class system.	c views Barrett's sification	67
Figure (21):	Magnified endoscopic findings with the normal gastric mucosa	NBI in	70
Figure (22):	Representative magnified endoscopi with NBI of non neoplastic gastric (chronic gastritis) according to classification system	c views mucosa the VS	72
Figure (23):	Representative magnified endoscopic with NBI of early gastric cancer according the VS classification system	c views ording to	74
Figure (24):	Pit pattern classification for colorectal n	eoplasia	78
Figure (25):	Classification of gastric varices (GV) according to Sarin et al.		97
Figure (26):	(a) Endoscopic image showed tumore gastric varices that have a high risk of	ous (F3), bleeding.	104
Figure (27):	Gastric Antral Vascular Ectasia (GAV	E)	108
Figure (28):	Dieulafoy lesion		110

vi

List of Figures (Cont ...)

Figure N	o. Title	Page	No.
Figure (29)	Angiodysplasia	•••••	111
Figure (30):	Algorithm for the management of polyps. FAP, familial adenomatous poly	gastric yposis	119
Figure (31):	Pangastritis; by convential light end (the above one) and by NBI (the belo and shows round pit pattern and regular	doscopy w one), SECN .	147
Figure (32):	A prepyloric ulcer; by conventia endoscopy (the above one) and by N below one), the ulcer edge shows re oval pit pattern and regular SECN	l light IBI (the ound to	149
Figure (33):	Fundic gastric polyp; by convention endoscopy (the above one) and by N below one), the polyp shows round pit and regular SECN	al light IBI (the pattern	151
Figure (34):	Gastric mass; by conventional light end (the above one) and by NBI (the belo and showed absent MS and distort pattern	doscopy ow one) ed MV	153
Figure (35):	The accuracy, sensitivity, specificity, P NPV of the magnifying NBI endose detecting presence of dysplasia or neop different gastric lesions	PV and copy in plasia in	158

vii

Introduction

n endoscopic examination, lesions are identified by changes in colour and irregularity of surface mucosa (*Tajiri et al.*, 2002).

Recent advances in technology enable us to obtain more detailed information during endoscopic procedures in order to provide the early diagnosis of malignant and premalignant changes of the mucosa with enhanced selection of appropriate treatments (*Nakayoshi et al., 2004*).

Narrow-band imaging (NBI) is a novel endoscopic technique that may enhance the accuracy of diagnosis by using narrow-bandwidth filters in a red-green-blue (R/G/B) sequential illumination system (*Tajiri et al., 2002*).

The depth of penetration into the mucosa depends on the wavelength used superficial for the blue band, deep for the red band and intermediate for the green band (*Sambongi et al., 2000*).

This results in visualization of the vascular network and surface texture of the mucosa in an effort to improve tissue characterization, differentiation, and diagnosis in different inflammatory and neoplastic (premalignant and malignant) lesions of the esophagus, stomach and large bowel (*Kuznetsov et al.*, 2006).

These technologies are now being developed, and may reduce the incidence of unnecessary biopsies. Further, we expect that these observations will join with the field of the molecular biology in the future (*Kumagai et al., 2006*).

Aim of the Work

To investigate mucosal and vascular patterns in various gastric lesions by using magnifying narrow band imaging endoscopy and indentify any relationship between those patterns and the relevant histological diagnosis

Advances in Upper G.I. Endoscopy

Development of UGI endoscopy:

The desire of physicians to inspect the hollow organs long preceded their ability to do so. However, endoscopy was impossible without adequate illumination. The nineteenth century saw many futile attempts at producing usable endoscopes. In 1806, for example, Bozzini's concept of the need for a Lichtleiter (light conductor) for an endoscope failed due to the lack of an adequate light source and the light conducting materials (*Modlin, 2000*).

A proposed source of illumination was the Gasogen (alcohol and turpentine) lamp used by Desormeaux in 1853 for a cystoscope and by Kussmaul in 1868. Kussmaul also tested a rigid gastroscope in a sword swallower (Fig. 1) (*Haubrich, 1987*).