Expression of CD39 and CD73 by Chronic Lymphocytic Leukemia B-cells

Thesis

Submitted for partial fulfillment of the master degree of In Clinical and Chemical Pathology

By:

Yasmine Magdy Salah Al-din

M.B.B.Ch Faculty of Medicine - Ain Shams University

Supervised by

Professor/ Soha Raouf Youssef

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Professor/ Maryse Soliman Ayoub

Professor of Hematology and Internal Medicine Faculty of Medicine, Ain Shams University

Doctor/ Botheina Ahmed Thabet Farweez

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2013

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Dr. Soha Raouf youssef** Professor of clinical and chemical pathology, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

This work could not have been completed without the great cooperation and assistance of **Dr. Maryse Soliman Ayoub** Professor of Hematology and Internal Medicine, Faculty of Medicine, Ain Shams University.

I would like also to express my sincere appreciation and gratitude to **Dr. Botheina Ahmed Thabet** lecturer of clinical and chemical pathology, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my husband and family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Yasmine Magdy

Contents

List of Abbreviations	i
List of Tables	 111
List of Figures	iv
Introduction and Aim of the Work	1
Review of Literature	4
* Chronic Lymphocytic Leukemia	4
* CD73 and CD39	38
Subjects and Methods	48
Results	53
Discussion	84
Recommendations	94
Summary	95
References	98
Arabic Summary	

List of Abbreviations

ADO	:	Adenosine
ADP	:	Adenosine diphosphate
AMP	:	Adenosine monophosphate
APAF-1	:	Apoptotic protease activating factor 1
ATM	:	Ataxia telangectasia mutation
ATP	:	Adenosine triphosphate
BCRs	:	B-cell receptors
BM	:	Bone marrow
CD	:	Cluster of differentiation
CLL	:	Chronic lymphocytic leukemia
CTL	:	Cytotoxic T cells
DDT	:	Dichlorodiphenyltrichloroethane
DISC	:	Death-inducing signaling complex
EBV	:	Epstein Barr virus
ELISA	:	Enzyme Linked Immunosorbent Assay
E-NTPDase	:	Ectonucleoside triphosphate diphosphohydrolase
FAB classif	ĩca	tion: French American British classification
FAS	:	FAS receptor
FASL	:	FAS ligand
FDC	:	Follicular dendritic cell
FITC	:	Fluorescin isothiocyauate
GPI	:	Glycophosphatidylinositol
HBV	:	Hepatitis B-virus
HCV	:	Hepatitis C virus
HIV	:	Human immunodefficieney virus
HMS		Unarrative malarial enlangemagaly
	:	Hyperactive malarial splenomegaly
IL		Interleukin
	:	
IL	:	Interleukin
IL INF	:	Interleukin Tumor necrosis factor Interquartile range

-i-

List of Abbreviations (Cont.)

K ₂ EDTA	:	Di Potassium-ethylene diamine tetra acetic
		acid
LDH	:	Lactate dehydrogense
LDT	:	Lymphocyte Doubling time
MRD	:	Minimal residual disease
MZ	:	Mantle zone
NCI.WG		National cancer institute working group
NHC	:	Non Hodgkin lymphoma
NPV	:	Negative predictive value
NT'5E	:	Ecto-5'-nucleotidase
PBS	:	Phosphate buffer saline
PBSC	:	Peripheral blood stem cell
PCNA	:	Proliferating cell nuclear antigen
PCR	:	Polymerase Chain Reaction
PE	:	Phycoerythrin
PPV	:	Positive predicate value
ROC	:	Receiver operator characteristic curve
RT-PCR	:	Real time Polymerase Chain Reaction
SCD23	:	Soluble CD23
SCID	:	Severe combined immunodeficiency
SD	:	Standard deviation
sICAM	:	Soluble intercellular adhesion molecule
SLL	:	Small lymphocytic lymphoma
SLVL	:	Splenic lymphoma with villous lymphocytes
ТК	:	Thymidine kinase
TL	:	Tumor load
UA	:	Uric acid
VEGF	:	Vascular endothelial growth factor
WBC	:	White blood cells.

-ii-

List of tables

Table Title Dage			
Table	Title	Page	
1	Similarities and differences between	7	
	CD5+ B-CLL cells and normal CD5+ B		
	cells		
2	Clinical features of CLL	12	
3	Scoring system for the diagnosis of CL	15	
4	Incidence of common genetic	16	
	aberrations in CLL		
5	Criteria for the diagnosis of CLL	21	
6	Differential Diagnosis of Chronic	22	
	Lymphocytic Leukemia		
7	Immune defects in CLL	23	
8	Differences between de novo PLL and	25	
	CLL/PLL		
9	The Rai and Binet staging systems	26	
10	Prognostic parameters in CLL	27	
11	Distribution of males and females in	53	
	both groups		
12	Patients' clinical groups	55	
13	Results of routine immunophenotyping	56	
	with its scoring system, percentage of		
	BM lymphocytes and β_2 microglobulin		
	level among patients		
14	Quantitative data of patients and controls	57	
15	CD73 expression in patients and controls	57	
16	CD39 expression in patients and controls	58	
17	Comparison between patients and	60	
	controls (intergroup analysis) as regard		
	studied parameters		
18	Comparison between patients clinical	63	
	subgroups according to Binet staging		

-iii-

List of tables (Cont.)

Table	able Title		
19	Comparison between patients' groups according to course of the disease	65	
20	Comparison between patients' groups according to their LDT	68	
21	Comparison between patients with low, moderate and high tumor load	21	
22	Comparison between patients' groups according to whether in hematological remission or not at time of sampling	74	
23	Correlation studies	76	
24	The diagnostic performance for each of CD73, CD39, CD39/CD73 co- expression and CD39/CD73 ratio as diagnostic markers of CLL	79	
25	The prognostic performance for each of CD73, CD39, CD39/CD73 co- expression and CD39/CD73 ratio as regards disease course	81	
26	The prognostic performance for each of CD73, CD39, CD39/CD73 co- expression and CD39/CD73 ratio as regard hematological remission	83	

-iv-

List of Figures

Fig.	Title	Page	
1	The two pathways of apoptosis: death receptor (extrinsic) and mitochondrial	8	
	(intrinsic) pathways		
2	Clinical photograph showing cervical	12	
	lymphadenopathy and skin infiltration in		
	CLL patients		
3	May-Grumwald-Giemsa-stained PB film	14	
	from a case with CLL with increased		
	prolymphocytes (CLL/PLL)		
4	Bone marrow aspirate effaced by well	17	
	differentiated lymphocytes		
5	Bone marrow biopsy specimen, B-cell	17	
	CLL/small lymphocytic lymphoma		
6	Bone marrow biopsy specimen, B-CLL	17	
	/small lymphocytic lymphoma		
7	Richter's transformation	19	
8	Splenic involvement in CLL with white-	19	
	pulp nodules containing proliferation		
	centers and infiltration of the red pulp		
9	Gene location of CD73	31	
10	Molecular structure of CD73	32	
11	Extracellular adenosine produced	37	
	through the activity of the ecto-enzymes		
	(CD39 and CD73) on tumor cells can		
	sufficiently downregulate antitumor		
	immunity		
12	Gene location of CD39	39	
13	Molecular structure of CD39	40	
14	CD39 regulates vascular	42	
	inflammation and thrombosis by		
	hydrolyzing ATP and ADP		

-V-

List of Figures (Cont.)
Title
T reg-mediated immunosuppression and
tumor growth via the CD39-CD73-
adanasina nathway

т • C T. .

Fig.	Title	Page
15	T reg-mediated immunosuppression and tumor growth via the CD39-CD73- adenosine pathway	44
	Percent of patients and controls positive for CD73 and CD39	58
16	CD 73 expression in CLL patients versus controls	61
17	CD39/CD73 ratio in CLL patients versus controls	61
18	CD39/CD73 ratio in CLL patients versus controls	61
19	CD39 expression among CLL patients having aggressive course versus patients with a quiescent course	66
20	CD39 expression among CLL patients with LDT >6months versus patients with < 6months	69
21	CD39 / CD73 ration among CLL patients with LDT >6months versus patients with < 6months	69
22	Figure showing that expression of CD39 in CLL patients varies with tumor load	72
23	CD39 expression in remitted CLL patients versus non remitted	73
24	CD39/ CD 73 ratio positively correlates with LDH level	77
25	CD39 expression negatively correlates with β -2 MG and CD79b	77
26	ROC cure shows whether CD73, CD39, their co-expression or the ratio between them are valid as diagnostic markers for B-CLL	80

-vi-

Fig.	Title	Page
27	ROC cure shows whether CD73, CD39 or the ratio between them are valid as prognostic markers for B-CLL	82
28	ROC cure shows whether CD73, CD39, their co-expression or the ratio between them are valid as prognostic markers for B-CLL	83

List of Figures (Cont.)

-vii-

Introduction

Chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is a lymphoproliferative disorder with a highly variable clinical course. CLL is characterized by the clonal expansion of mature antigen stimulated CD5+/CD23+ B-lymphocytes in blood, secondary lymphoid tissue and the bone marrow (*Chiorazzi et al, 2005*).

The clinical staging systems developed by Rai and Binet remain the standard methods for risk assessment in CLL, but they don't allow predictions about the risk of disease progression in early stage disease patients, which is the majority of patients. A sizable number of studies investigated prognostic markers, which can be helpful for predicting the individual risk at an early stage of the disease (*Sivina et al*, 2011).

The most accepted and widely used prognostic markers in CLL are the mutation status of immunoglobulin variable gene segments (IgVH), the expression of CD38 and ZAP-70 as well as cytogenetic risk groups (*Catovsky and Montserrat*, 2011).

Extracellular nucleotides and nucleosides such as adenosine triphosphate (ATP) and adenosine (ADO) respectively, may participate in creating favourable conditions that promote tumour growth and survival, CD39 hydrolyses ATP or ADP to adenosine monophosphate (AMP). AMP is then rapidly degraded to ADO by soluble or membrane bound CD73. ADO production is an integral component of the suppressive machinery of regulatory T-cells, blunting effector T-cell proliferation and secretion of T-helper 1-type cytokines, thus promoting tumor growth and survival (*Serra et al, 2011*).

Elevated expression and activity of CD73 have been reported in several types of solid tumors and in certain types of

Introduction and Aim of The Work

leukemia, suggesting that it may be benificial to the survival of tumour cells and could promote metastatic spread (*Stagg et al*, *2010*).

On these grounds, it is justified to hypothesize that expression of CD39 and CD73 by CLL cells might have an impact on the course of the disease in CLL patients and that this warrants further studies.

Aim of the Work

In this work we aim to study the expression of CD39 and CD73 and its clinical significance among a group of Egyptian B-CLL patients.

Chronic Lymphocytic Leukemia

Introduction:

Chronic lymphocytic leukemia (CLL) is the most common adult form of leukemia (*Xu et al, 2008*). It is a monoclonal disorder characterized by a progressive accumulation of functionally incompetent lymphocytes (*Puente et al, 2013*).

CLL follows an extremely variable clinical course with overall survival times ranging from months to decades. Some patients have no or minimal signs and symptoms during their entire disease course and have a survival time similar to agematched controls. Other patients experience rapidly deteriorating blood counts and organomegaly and suffer from symptoms at diagnosis or soon thereafter necessitating therapy (*Crowther-Swanepoet et al, 2013*).

Epidemiology:

Prevalence and Incidence:

It is the most common leukemia in the western world with an incidence of 4:100 000/year. The incidence increases to >30:100 000/year at age >80 years (*Eichhorst et al, 2010*). Generally, it creates more than 30% of all types of leukemia, with a median age at time of diagnosis of 72 years. Incidence rates increase with age and are higher among men than women (Panovská et al, 2010). In Asian countries, CLL represents only 5% of leukemias, with the T-cell phenotype predominating. This geographic difference in incidence is most likely the result of genetic factors (O'Brien and Keating, 2005).