

Kinetics Studies on Nano-Materials in Solid State

Thesis Submitted

By Raghda Kamal El-Din Hussein

B.Sc., Ed. 2008

For

The Degree of Master for the Teacher's Preparation in Science (Physical Chemistry)

To

Chemistry Department Faculty of Education Ain Shams University Cairo, Egypt 2013

Approval Sheet

Name of candidate: Raghda Kamal El-Din Hussein

Degree: M. Sc. Degree for Teacher's Preparation in Science

(Physical Chemistry)

Thesis Title: Kinetics Studies on Nano-Materials in Solid State

This Thesis has been approved by:

Approval

Prof. Dr. Mahmoud Ahmed Mohamed Mousa

Professor in Physical Chemistry, Faculty of Science, Benha University.

Dr. Nabil Hefny Amin

Assistant Professor Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

Dr. Mohamed Nasr El-Din Hassan Hamed

Assistant Professor Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

Prof. Dr. Mostafa Mohamed Ismail Head of the Chemistry Department Faculty of Education Ain Shams University

Kinetics Studies on Nano-Materials in Solid State

By

Raghda Kamal El-Din Hussein

B.Sc., Ed. 2008

Under the Supervision of:

Prof. Dr. Mahmoud Ahmed Mohamed Mousa

Professor in Physical Chemistry, Faculty of Science, Benha University.

Dr. Nabil Hefny Amin

Assistant Professor Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

Dr. Mohamed Nasr El-Din Hassan Hamed

Assistant Professor Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

Title Sheet

Name of candidate: Raghda Kamal El-Din Hussein

Date of Birth: 3/5/1987

Place of Birth: Cairo

First University Degree: B.Sc.& Ed., May 2008

Name of University: Ain Shams

Kinetic Studies on Nano-Materials in Solid State

Raghda Kamal El-Din Hussein

Department of Chemistry, Faculty of Education, Ain Shams University

The influence of particle size on the thermal decomposition of nanocobalt oxalate dihydrate and nano-lead oxalate, $Co(C_2O_4)$ ·2H₂O and $Pb(C_2O_4)$ were studied by means of thermogravimetry (TG) technique under non-isothermal and static air conditions. The studied samples and the final products were characterized by means of X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) and transmission electron microscopy (TEM) techniques. The kinetic analysis of the thermal decomposition for $Co(C_2O_4)$ ·2H₂O and Pb(C₂O₄) was performed by both integral and differential calculation methods including the following procedures: isoconversional methods (model-free) (including the Friedman (FR), Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods) and Four calculation procedures based on single TG curves such as Ŝatava-Šestàk, Madhusudanan-Krishnan-Ninan, Wanjun et al as well as Coats and Redfern methods. Based on the iterative isoconversional calculation procedure, the activation energy values E_{it} associated of Co(C₂O₄)·2H₂O and Pb(C₂O₄) were evaluated. Comparing the kinetic results thirty five reaction models, it was found that decomposition data were well expressed by the Avrami-Erofe'ev model. The values of ΔS^{\neq} , ΔH^{\neq} and ΔG^{\neq} for the two stages were also computed. The influence of particle size on the thermal decomposition was verified. The results showed that the reactivity of the thermal decomposition increased with decreasing the particle size.

ABSTRACT

Keywords: nanoparticles; Cobalt oxalate dihydrate; Lead oxalate; Thermogravimetric analysis; Non-isothermal decomposition kinetics; Kinetic models

Supervisors:

Prof. Dr. Mahmoud Ahamed Mousa

Professor of Physical Chemistry, Department of Chemistry, Faculty of science, Benha University.

.....

.....

Dr. Nabil H. Amin

Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University. **Dr. Mohamed Nasr El-Din Hassan Hamed**

.....

Assistant Professor Assistant Professor of Physical Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University

ACKNOWLEDGEMENT

First of all, thanks to **Allah**, for helping me to accomplish this work.

I would like to express my sincere gratitude and indebtedness to **Prof. Dr. Mahmoud Ahamed Mousa,** Prof. of Physical Chemistry, Faculty of Science, Benha University, for his suggestions, preparation of the starting material and lay out of this thesis, continuous encouragement, valuable helping in interpretation of the results and to follow the progress of the work with keen interest and guidance. I would like to express my thanks to him for his efforts in this thesis.

Also, I would like to express my sincere appreciation toward **Dr. Nabil H. Amin,** Assistant Professor of Physical Chemistry, Faculty of Education, Ain Shams University; for his continuous and valuable Support during supervision and kind help.

I would like to express deep thanks and gratitude to, **Dr. Mohamed Nasr El-Din Hamed,** Assistant Professor Assistant Professor of Physical Chemistry, Faculty of Education, Ain Shams University; for all things, for his continuous and valuable discussions during supervision, for his suggestions, valuable helping in interpretation of the results and to follow the progress of the work. I am truly thankful to **Prof. Dr. Mostafa Mohamed Ismail**, the present Head of the Department of Chemistry, and to **Prof.**

Dr. Said Mohamed khalil the vice dean of the faculty and previous head, who introduced great kind facilities and encouragement. Last but not the least, I remember with gratitude my family members who were always a source of strength, support and inspiration.

<u>CONTENTS</u>	
Acknowledgment	i
Abstract	iii
List of Contents	v
List of Figures	xi
List of Tables	xvi
Abbreviations	xxi
CHAPTER I	
INTRODUCTION and LITERATURE SURVEY	
I.1. General introduction	1
I.1.1. Metal oxalates	11
I.1.1.1. Lead oxalate	13
I.1.1.2. Cobalt Oxalate	14
I.1.2.0xides	17
I.1. 2. 1. Lead oxide	17
I.1. 2. 2. Cobalt Oxide	18
I.2. Literature Survey	20
Aim of the Work	29
CHAPTER II	
THEORETICAL REVIEW AND METHODS OF	
CALCALUTIONS	
II.1. Introduction	30

II.2. Reaction Rate Laws	30
II. 3. Models and Mechanisms	33
II.3.1. Model Classification	33
II.4. Model Derivation	43
II.4.1. Nucleation and Nuclei Growth Models	45
II.4.1.1. Nucleation	45
II.4.1.2. Nuclei Growth	47
II.4.2. Power Law (P) Models	48
II.4.3.The Avrami-Erofeev (A) Models	49
II.4.4. Autocatalytic Models	50
II.4.5. Geometrical Contraction (R) Models	51
II.4.5.1. The Contracting Cylinder (Contracting Area)	52
Model-R ₂	
II.4.5.2. The Contracting Sphere/Cube (Contracting	53
Volume) Model – R ₃	
II.4.6. Diffusion (D) Models	55
II.4.6.1. One dimensional diffusion (D ₁) model	55
II.4.6.2. Two-dimensional diffusion (D ₂) model	56
II.4.6.3. Three-dimensional diffusional (D ₃) model	56
II.4.7. Order-Based (F) Models	56
II.5. Calculation Methods	58
II.5.1 Integral Methods (single heating rate)	59
II.5.2. Iso–conversional methods	61

II.5.2.1. Calculation of activation energy by using model	62
free methods	
II.5.2.2 Calculation of activation energy by iterative	63
procedure	
II.6. Determination of the most probably mechanism	65
function	
II.7. Calculation of pre-exponential factor in Arrhenius	66
equation and thermodynamic parameters	
CHAPTER III	
EXPERIMENTAL	
III A. Chemicals and Materials	71
III A.1.Liquids	71
III A.2.Solids	71
III B. Preparations of nano-lead oxalate	72
III B. 1. Preparation of nano-lead oxalate by	72
solvothermal method	
III B. 2. Preparation of nano-lead oxalate by	72
precipitation method	
III C. Preparation of nano-cobalt oxalate dihydrate	73
III C. 1. Preparation of nano-cobalt oxalate by	
precipitation method in the presence surfactant	73
III C. 1. Preparation of nano-cobalt oxalate by	74
precipitation method in the absence surfactant	

III D. Preparation of nano-oxides	74
III D. 1. Preparation of nano-lead oxide	74
III D. 2. Preparation of nano-cobalt oxide	75
III E. Instruments	75
III E.1. Thermal analysis	75
III E.2. X-Ray diffraction analysis (XRD)	75
III E.3. Infrared spectral studies (IR)	76
III E.4. Transmission electron microscope (TEM)	76
CHAPTER IV	
RESULTS AND DISCUSSION	
IV–A. Results of cobalt oxalate dihydrate	79
IV–A.1. Thermal Stability	79
IV–A.2.X-ray Diffraction	84
IV–A.3. FT-IR spectra	87
IV–A.4. Transmittion Electron Microscopy (TEM)	90
IV–A.5. Kinetic studies	92
IV-A.5.1. Iso-conversional methods	92
IV-A.5.1.1. Calculation of activation energy	93
IV-A.5.1.2. Calculation of activation energy by	94
iterative procedure	
IV-A.5.1.3. Simulations and comparison between Iso-	118
conversional methods	

IV-A.5.1.4. Determination of the most probably	120
mechanism function	
IV-A.5.1.5. Calculation of pre–exponential factor in	132
Arrhenius equation and thermodynamic functions	
IV-A.5.2. Kinetic parameters using a single heating	138
rate	
IV-B. Results of lead oxalate	143
IV–B.1. Thermal Stability	143
IV–B.2.X-ray Diffraction	146
IV–B.3. FT-IR spectra	149
IV–B.4. Transmittion Electron Microscopy (TEM)	151
IV–B.5. Kinetic studies	153
IV-B.5.1. Iso-conversional methods	153
IV-B.5.1.1. Calculation of activation energy	153
IV-B.5.1.2. Calculation of activation energy by	155
iterative procedure	
IV-B.5.1.3. Simulations and comparison between Iso-	168
conversional methods	
IV-B.5.1.4. Determination of the most probably	169
mechanism function	
IV-B.5.1.5. Calculation of pre–exponential factor in	176
Arrhenius equation and thermodynamic functions	

IV-B.5.2. Kinetic parameters using a single heating	181
rate	
Appendix Part (A)	185
Appendix Part (B)	225
SUMMARY AND CONCLUSIONS	237
REFERENCS	244
Arabic Summary	
Arabic abstract	

LIST OF FIGURES

I.1	16
(Color online) Co-oxalate unit cell of the orthorhombic β - phase of ICPDS file 25–0250. There are eight cobalt atoms	
located in two non-equivalent positions designed as Co1	
and Co2, each cobalt ion is shifted respect to other by a translation vector (1/2, 1/2, 0).	
I.2	18
(a) Unit cell of α -PbO (dark blue spheres) occupies the (c) site, O ²⁻ (light yellow spheres) occupies the (a) site. (b) Showing the layered structure of PbO and the wide-stretched open space between the Pb-O-Pb layers.	
I.3	19
Crystal structure of cobalt oxide Co ₃ O ₄ .	
II.4	40
Isothermal $d\alpha/dt$ time and α time plots for solid-state reaction models (Table 1); (a) acceleratory; (b-d) Deceleratory; (e) constant; (f) Sigmoidal.	
II.5	42
Non isothermal $d\alpha/dT$ and α temperature plots for solid- state reaction models (Table 1); (a) P-models; (b) D- models; (c-e) F and R models; (f) A-models.	
II.6	50
Two types of nuclei growth restrictions: black dots are nucleation sites; shaded areas are nuclei growth regions.	
II.7	52
Geometrical crystal shapes: (a) cylinder; (b) sphere; (c) cube.	
II.8 One-dimensional diffusion through a flat plane.	55
	F 0
II.9 Schematic representation of a cylindrical particle reaction.	52