Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Qalyubia Governorate (Sector A2)

7hesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By Ahmed Ismail Farag Elsayed M.B.B.CH. Cairo University

Under Supervision of

Prof. Dr. Gamal Elsayed Mady

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Heba Wahid Elsaeed

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Hcknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude **Prof. Dr. Gamal Elsayed Mady**, Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University, for his sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under his supervision.

I feel deeply indebted to **Dr. Heba Wahid Elsaeed**, Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University, for her active cooperation, deep concern, enthusiastic encouragement, the effort and time she has devoted to the fulfilment of this work.

I wish also to express my great gratitude and utmost appreciation to **Dr. Yahya Makkeyah**, Lecturer of Internal Medicine and nephrology, Ain Shams University, for his indispensable effort in the statistical part of this work.

Ahmed Ismail Farag

List of Contents

Itemes	Page NO.
List of Abbreviations	i
List of Tables	iv
List of Figures	Vi
Introduction	1
Aim of the Work	6
Review of Literature	
History of Hemodialysis	7
Epidemiology of (ESRD)	37
Hemodialysis Prescription	56
Hemodialysis-Associated Comorbidities	133
Guidelines of kidney disease	183
Hemodialysis in Egypt	207
Subjects and Methods	228
Results	233
Discussion	257
Summary and Conclusion	270
Recommendations	274
References	276
Arabic Summary	1

List of Abbreviations

Abbrev.	Full term
ABD	Adynamic bone disease
ACEIs	Angiotensin-converting enzyme inhibitors
ADPKD	Autosomal dominant polycystic kidney disease
AGE	Advanced glycation endproduct
AHA	American Heart Association
AJKD	American Journal of Kidney Diseases
ANZSN	Australian and New Zealand Society of Nephrology
ARBs	Angiotensin receptor blockers
AV fistula	Arterio venous fistula
Aranesp®	Therapy
BAP	Bone alkaline phosphatase
BNP	B-type natriuretic peptides
BP	Blood pressure
BUN	Blood urea nitrogen
CAPN	Canadian Association of Pediatric Nephrologists
CARI	Caring for Australian with Renal Impairment
CDC	Centers for Disease Control and prevention
CHF	Congestive heart failure
CHOIR	Correction of Hemoglobin and Outcomes in Renal
	Insufficiency
CHr	Reticulocyte Hb content
CKD 5D	Chronic kidney disease stage 5 on dialysis
CKD	Chronic kidney diseases
CKD-MBD	Chronic Kidney Disease-Mineral and Bone Disorder
CMB	Calcium mass balance
CPG	Clinical guidelines
CREATE	Cardiovascular Risk Reduction by Early Anemia
	Treatment with Epoetin Beta
CSN	Canadian Society of Nephrology
cTns	Cardiac troponins
CUA	Calcific uremic arteriolopathy
CVD	Cardiovascular disease
DCa	Dialysate calcium concentration

DFO	Desfirroxamine
DOPPS	Dialysis Outcomes and Practice Patterns Study
EBPG	European Best Practice Guidelines
eKt/V	The Equilibrated Kt/V
EPO	Erythropoietin
ERA-	European Renal Association - European Dialysis and
EDTA :	Transplant Association
ERBP	European Renal Best Practice
ERT	Evidence review team
ESA	Erythropoietin stimulating agent
ESRD	End stage renal disease
FBC	Full blood count
FDA	US Food and Drug Administration
FGF	Fibroblast growth factor
GFR	Glomerular filtration rate
GN :	Glomerulo nephritis
GRADE	Grades of Recommendation, Assessment,
	Development, and Evaluation
Hb	Hemoglobin
HBV	Hepatitis-B virus
HCV	Hepatitis C virus
HD	Hemodialysis
HDF	Hemodiafiltration
HDP	Hemodialysis Product
HEMO	The Hemodialysis study
study	
HIV	Human immunodficiency virus
IL-1	interleukin-1
iPTH	Intact parathyroid hormone
K/DOQI	National Kidney Foundation Kidney Disease Outcome
	Quality Initiative
KDIGO	Kidney Disease Global Outcomes Improvement
	initiative
KHA	Board of Kidney Health Australia
LVH	Left ventricle hypetrophy
MOH	Egyptian Ministry of Health
nPCR	Normalized Protein Catabolic rate

NT-proBNP	N-terminal prohormone of brain natriuretic peptide
PAD	Peripheral arterial disease
PCI	Percutaneous coronary intervention
PRCA	Pure red cell aplasia
RA	Renal Association
RCTs	Randomised control trials
ROD	Renal osteodystrophy
SCD	Sudden Cardiac Death
SHPT	Secondary hyperparathyroidism
SLE	Systemic lupus erythematosus
spKt/V	Single- pool Kt/V
SRI	The solute removal index
stdKt/ V	standard Kt/V
t-PA	Tissue plasminogen activator
TREAT	Trial to Reduce Cardiovascular Events with
TSAT	Transferrin saturation
URR	Urea reduction ratio
USRDS	United States Renal Data System
VC	Vascular calcification
VDR	Vitamin D receptor
VDRA	Vitamin D receptor activators
WGs	Work groups
ß2m	Beta 2-microglobulin

List of Tables

Table No.	Title	Page No.
Table (1)	Elements of Hemodialysis Prescription	<u>57</u>
Table (2):	blood flow rate to match gauge	<u>98</u>
Table (3)	a physical exam for AVF stenosis	<u>113</u>
Table (4):	Recommended dosing guidelines of currently available ESAs products in the United States	<u>140</u>
Table (5):	Recommended dosing guidelines of currently available iron products in the United States	<u>143</u>
Table (6):	Recommended dosing guidelines of currently available ESAs &iron products in the United States	<u>144</u>
Table (7):	Evaluation of CKD-MBD	<u>166</u>
Table (8):	Low turnover bone disease: biochemical features:	<u>169</u>
Table (9):	Quality of Evidence	<u>194</u>
Table (10):	Grading of strength of recommendation	<u>194</u>
Table (11):	Data collection sheet for Hemodialysis prescription in Egypt Study	<u>230-232</u>
Table (12):	Gender and age distribution in the study population	233
Table (13):	Different causes of ESRD in the study population	<u>234</u>
Table (14):	Different comorbidities in the study population	<u>236</u>
Table (15):	Occupational status in the study population	<u>237</u>
Table (16):	Dependency status in the study population	<u>238</u>
Table (17):	Frequency of HD sessions/week in the study population	<u>239</u>
Table (18):	Duration of HD sessions in the study population	<u>239</u>
Table (19):	Dialysis Sponsorship	<u>240</u>
Table (20):	Type of vascular access in the study population	<u>241</u>
Table (21):	Frequency of access failure in the study population	242
Table (22):	Hemoglobin (Hb) levels	242
Table (23):	Hemoglobin category in the study population	243
Table (24):	History of iron injection in the study population	<u>243</u>
Table (25):	Different types of ESA received by study population	244
Table (26):	History of blood transfusion in the study population	<u>245</u>
Table (27):	The levels of Calcium, phosphorus and PTH during the 6 months of the study	246
Table (28):	Calcium levels in the study population	<u>247</u>
Table (29):	Phosphorus level in the study population	247
Table (30):	Common intradialitic complications	248

Table (31):	Viral status in the study population (HCV, HBV and HIV).	<u>249</u>
Table (32):	Type of dialysate used in the study population	<u>250</u>
Table (33):	Concentration of dialysate sodium used in the study population	<u>250</u>
Table (34):	Concentration of dialysate potassium used in the study population	<u>251</u>
Table (35):	Concentration of dialysate calcium	252
Table (36):	Concentration of dialysate magnesium	253
Table (37):	Vitamin Supplementation	<u>253</u>
Table (38):	History of use of vitamin D supplement	254
Table (39):	the type of dialyzer used by the study population	255
Table (40) :	dialyzers surface area	<u>256</u>

List of Figures

Figure No.	Title	Page No
Figure (1)	Nurepuel	8
Figure (2)	Adolf Eugen Fick	9
Figure (3	Thomas Graham	10
Figure (4)	Graham prepared a bell-shaped vessel	10
Figure (5)	RichardBright	11
Figure (6)	Vividiffusion machine from Abel and colleagues, 1913	13
Figure (7)	Dr. Heinrich Necheles, 1897–1979	15
Figure (8)	Georg Haas	15
Figure (9)	the first flat hemodialysis membrane	16
Figure (10)	Dr. Georg Haas performing dialysis on a patient at the University of Giessen	17
Figure (11)	Willem Kolff	19
Figure (12)	Kolff's HD machine	19
Figure (13)	HD by Kolff's HD machine	20
Figure (14)	The Kolff-Brigham dialyser used in Korea was a Boston-modified version of Kolff's rotating drum machine	20
Figure (15)	Gordon Murray	21
Figure (16)	Murray's first dialyser	22
Figure (17)	Nils Alwall	22
Figure (18)	Nils Alwall the artificial kidney	23
Figure (19)	Quinton, Dillard and Scribner's vascular acces	27
Figure (20)	Schematic construction of a Kiil dialyzer according to the original English drawings	29
Figure (21)	The hollow fibre dialyser allowed for access to dialysis to be completed in four hours instead of 24	33
Figure (22)	The problem of gaining access to the bloodstream was solved by the arterio venous fistula	<u>34</u>
Figure (23)	The first family of hollow-fiber dialyzers (C-DAK, "Cordis Dow Artificial Kidney")	35
Figure (24)	The current generation of dialyzers produced by Fresenius Medical Care	35
Figure (25)	Components of HD	57
Figure (26)	Components of the dialyzer	60
Figure (27)	Mechanisms of solutes removal in hemodialysis	66
Figure (28)	Comparison of urea clearance rates between low- and high efficiency hemodialyzers	73

Figure No.	Title	Page No
Figure (29)	Water permeability of a membrane and control of	75
	volumetric ultrafiltration in hemodialysis.	
Figure (30)	Assessing the patient access	82
Figure (31)	Arteriovenous fistula &Graft	91
Figure (32)	Fistulas gold slandered access	91
Figure (33)	Location of Graft Placement	93
Figure (33)	a circular rubbing motion	96
Figure (34)	Needle site selection	97
Figure (35)	The direction of needle insertion	98
Figure (36)	The rope ladder Technique	100
Figure (37)	the buttonhole cannulation technique	101
Figure (38)	a physical exam for AVF stenosis	113
Figure (39)	ALLEN TEST	114
Figure (40)	Anastomatic Aneurysm of AVF	118
Figure (41)	Protocol for cannulaton of Anew AVF	119
Figure (42)	Schematic representation of the mechanisms underlying anemia of CKD	138
Figure (43)	Erythropoietin mechanism of action	140
Figure (44)	The higher percentage of death related to	146
	cardio vascular complication among	
	hemodialysis patients	
Figure (45)	Cardiovascular Mortality: General Population vs ESRD Dialysis Patients	147
Figure (46)	Incidence of CVD in CKD patients: Comparing to the general population (GP) Jungers et al. <i>NDT</i> 1997	147
Figure (47)	CV Mortality and Chronic Kidney Disease	148
Figure (48)	Potential factors increasing the risk for sudden death in dialysis patients	159
Figure (49)	classification of renal osteodystrophy	<u>163</u>
Figure (50)	Impact of CKD-MBD	164
Figure (51)	Calciphylaxis	170
Figure (52)	Carpel tunnel syndrome	174
Figure (53)	Summary of complication	182
Figure (54)	The development of clinical practice guidelines	185

Figure (55)	Etiology of CKD in Egypt in 2008	214
Figure (56)	Gender distribution in the study population	234
Figure (57)	Different causes of ESRD in the study population	234
Figure (57) Figure (58)	Different comorbidities in the study population	233
		237
Figure (59)	Occupational status in the study population	
Figure (60)	Dependancy status in the study population	238
Figure (61)	Frequency of HD sessions/week in the study population	239
Figure No.	Title	Page No
Figure (62)	Duration of HD sessions in the study population	240
Figure (63)	Dialysis sponsorship in study population	241
Figure (64)	Type of vascular access in the study population	241
Figure (65):	Frequency of access failure in the study population	242
Figure (66)	Hemoglobin category in the study population	243
Figure (67)	History of iron injection	244
Figure (68)	Type of ESA used by the study population	244
Figure (69)	History of blood transfusion in the study Population	245
Figure (70)	Calcium levels in the study population	247
Figure (71)	Phosphorus level in the study population	248
Figure (72)	Types of complications during HD session in the	249
Figure (72)	study population	249
Figure (73)	Viral status in the study population.	
Figure (74)	Type of dialysate used in the study population	250
Figure (75)	Concentration of dialysate Sodium used in the study population	251
Figure (76)	Concentration of dialysate potassium used in the study population	251
Figure (77)	Concentration of dialysate calcium used in the study population	252
Figure (78)	Concentration of dialysate magnesium used in the study population	253
Figure (79)	History of vitamins use in the study population	254
Figure (80)	History of use of vitamin D supplement	254
Figure (81)	type of dialyzer used by the study population	255
Figure (82)	dialyzer surface area	256

INTRODUCTION

End-stage renal disease (ESRD) is defined as irreversible decline in a person's own kidney function, which is severe enough to be fatal in the absence of dialysis or transplantation. ESRD is included under stage 5 where it refers to individuals with an estimated glomerular filtration rate (eGFR) less than 15 mL per minute per 1.73 m^2 body surface area, or those requiring dialysis irrespective of glomerular filtration rate decline. (*NKF*. (*K/DOQI*),2010)

ESRD has become a public health concern worldwide as the total number

of ESRD patients requiring renal replacement therapy has been growing dramatically (Bello AK, Nwankwo E, El Nahas AM ,2005)

ESRD is one of the main health problems in Egypt. Currently, hemodialysis (HD) represents the main mode for treatment of chronic kidney disease (CKD) stage 5, previously called ESRD or chronic renal failure. (Ahmed AM, Allam MF, Habil ES, et al., 2010).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate.(*Eknoyan et al,2002*)

CKD is at least 3-4 times more frequent in Africa than in developed countries (Naicker S, 2009)

Patient registry and a statistical evaluation of patients with ESRD is useful to clarify the characteristics of ESRD patients and dialysis therapy, as well as the complications or results based on scientific evidence, to improve the quality of dialysis therapy and provide socioeconomic health administration information for a future health plan (Jin DC, 2011)

According to the United States Renal Data System annual report 2011 (USRDS) the prevalence of ESRD varies worldwide. It can be high as in Taiwan 2447 patients per million populations (pmp), Japan 2205 pmp, and United States 1811 pmp and it can be low as in Philippines 110 pmp, Bangladesh 140 pmp and Russia 173 pmp. In developing countries like Egypt, there is an increase in prevalence and incidence of ESRD exerting a great burden on health system. (**USRDS, 1998**).

The prevalence of ESRD in Egypt increased from 225 (pmp) in 1996 to 483 pmp in 2004 (Adel Afifi et al, 1996-2008).

The main cause of ESRD in Egypt is hypertension followed by diabetes and still unknown causes represent about 15%. The main problem in developing countries is lack and inaccuracy of data registry. Also there are no available epidemiological reports for different parts of the country. (**MMJ,2011**)

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (Schuster MA et al., 1998).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to CKD.As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQI) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidelines help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels. They may also help to insure that all institutions provide an equally good base line standard of care (*Cameron,1999*).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured. (*Locatelli et al., 2004*)

Dialysis Outcomes and Practice Patterns Study (DOPPS) has observed a large variation in anemia management among different countries. The main hemoglobin concentration in HD patients varied widely across the studied countries ranging between8g/dl to 11g/dl. The percentage of prevalent HD patients receiving erythropoietin stimulating agents 'ESA' has increased from 75% to 83%. The percentage of HD patients receiving iron varies greatly among DOPPS countries ranging from 38% to 89% (*Locatelli et al., 2004*).

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care. At the same time, their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standards, budgetary limitation and methods of feeding back information concerning current practice. (*Cameron, 1999*)

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care. At the same time, their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron, 1999*).

Although HD is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services. (*MOHP*, 1999)