

Nanoparticles for BrainTargeting

A Thesis submitted for Partial fulfillment of Ph.D. Degree In Pharmaceutical Sciences (Pharmaceutics)

Presented by Ghada Mamdouh Kamel El Zaafarany

Master Degree of Pharmaceutical Sciences (2010) Teaching Assistant of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy – Ain Shams University

Under the supervision of

Prof. Dr. Gehanne Abdel Samie Awad

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

Prof. Dr. Samar Mansour Holayel

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

Dr. Mahmoud Eid Soliman

Lecturer of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

> Ain Shams University Faculty of Pharmacy Department of Pharmaceutics and Industrial Pharmacy 2016

LIST OF CONTENTS

	Page
List of Abbreviations	VII
List of Tables	XI
List of Figures	XVII
Abstract	XXIV
General Introduction	1
Scope of Work	30
Chapter I: Preparation, Characterization and Optimization	
of Oxcarbazepine-Loaded Emulsomes	
1. Introduction	32
2. Experimental	36
2.1. Materials	36
2.2. Equipment	37
3. Methodology	38
3.1. U.V. scanning of OX in methanolic phosphate buffer	38
and in 1% Triton X 100	00
3.2. Construction of the calibration curves and	
determination of the procedural constant (K) of OX	38
in methanolic phosphate buffer and in 1% Triton X	•••
100	
3.3. Preparation of emulsomes	39
3.4. Evaluation of emulsomes	41
3.4.1. Entrapment efficiency (EE%)	41
3.4.2. Particle characterization	41
3.5. Effect of different variables on the EE%, particle	42
size and charge of OX-emulsomes	

	3.5.1. Effect of drug concentration	42
	3.5.2. Effect of total lipid amount	42
	3.5.3. Effect of vesicle composition	42
3.0	6. <i>In vitro</i> release of OX from emulsomes	43
3.7	7. Effect of surface additives on the charge, size and	
	drug release from optimized emulsomes for	43
	enhanced brain delivery	
3.8	8. Transmission electron microscopy (TEM)	44
3.9	9. Physical stability study	44
3.	10. Statistical analysis	45
4. Re	esults and Discussion	46
4.	1. U.V. scanning of OX in methanolic phosphate buffer	16
	and in 1% Triton X 100	40
4.2	2. Calibration curves and procedural constants (K) of	
	OX in methanolic phosphate buffer and in 1% Triton	46
	X 100	
4.	3. Optimization of OX entrapment efficiency in	50
	emulsomes	50
	4.3.1. Effect of drug concentration	50
	4.3.2. Effect of total lipid amount	51
	4.3.3. Effect of vesicle composition	53
4.4	4. Particle size analysis	59
4.:	5. Zeta potential	64
4.0	6. <i>In vitro</i> drug release	66
4.7	7. Evaluation of the effect of charge modifiers	69
4.8	8. Stability study	73
4.9	9. Transmission electron microscopy	76
5. Conclusions 73		78

Chapter II: Preparation, Characterization and Emulsomal-

Loading of Polyethylene Glycol Diacrylate (PEGDA) Cryogels

1.	1. Introduction7			79
2.	2. Experimental			86
	2.1.	Materials		86
	2.2.	Equipmen	t	86
3.	Meth	odology		87
	3.1.	Synthesis	of PEGDA cryogels	87
	3.2.	Emulsoma	al incorporation in the chosen PEGDA	00
		cryogel		90
	3.3.	Characteri	zation of plain and emulsome loaded	00
		PEGDA c	ryogels	90
	3	.3.1. Chara	cterization of plain PEGDA cryogels	90
		3.3.1.1.	Viscosity Measurement	90
		3.3.1.2.	Swelling ratio and water uptake capacity	01
			assessment	91
		3.3.1.3.	Cryogel mesh size determination	91
		3.3.1.4.	Hydrolytic degradation (HD) evaluation	93
		3.3.1.5.	Fourier transform infrared spectroscopy	04
			(FTIR)	74
		3.3.1.6.	Microstructure examination	94
		3.3.1.7.	Statistical and factorial analysis	95
	3	.3.2. Chara	cterization of emulsome loaded cryogel	96
4.	Resu	lts and dise	cussion	97
	4.1.	Preparatio	n of PEGDA cryogels	97
	4	.1.1. Shear	rate-stress plots	98
	4	.1.2. Viscos	sity	104

4.1.3. Factorial analysis	115
4.1.3.1. Main effects of different factors	116
4.1.3.1.1. Effect of PEGDA monomer	117
concentration	110
4.1.3.1.2. Effect of APS/TEMED	117
(initiator/accelerator) concentration	11/
4.1.3.1.3. Effect of freezing time	119
4.1.3.2. Interactions between factors	122
4.2. In depth characterization of selected cryogels	127
4.2.1. Fourier transform infrared spectroscopy	127
4.2.2. Swelling ratio and water uptake capacity	129
4.2.3. Network characterization	132
4.2.4. Hydrolytic degradation	136
4.2.5. Morphological analysis	138
4.3. Immobilization of OX loaded TO17-Tw emulsomes in	120
B9 cryogel	139
4.3.1. Viscosity measurement of TO17-Tw/B9	140
emulsomal cryogel	140
4.3.2. In vitro drug release from TO17-Tw/B9 emulsomal	1 4 3
cryogel	142
5. Conclusions	145
Chapter III: Synthesis, Characterization and Emulsomal-	
Loading of PLGA-PEG-PLGA Thermosensitive Triblock	
Copolymer	
1. Introduction	146
2. Experimental	152
2.1. Materials	152
2.2. Equipment	153

.

3.	Meth	odology	154
	3.1.	Synthesis of PLGA-PEG-PLGA triblock copolymer	154
	3.2.	Characterization of plain PLGA-PEG-PLGA	155
		copolymer	199
	3.	2.1. Nuclear magnetic resonance (¹ H NMR)	155
	3.	2.2. Gel permeation chromatography (GPC)	156
	3.	2.3. Differential scanning colorimetry (DSC)	156
	3.	2.4. Rheological characterization	157
	3.	2.5. Size measurement of copolymer solution by	158
		dynamic light scattering (DLS)	130
	3.3.	Preparation, gelation and characterization of aqueous	150
		PLGA-PEG-PLGA thermogel solutions	159
	3.	3.1. Sample preparation	159
	3.	3.2. Macroscopic phase behaviours of aqueous	
		polymer solutions and determination of gelation	160
		temperature	
	3.	3.3. Viscosity measurement	160
	3.4.	In vitro release	161
	3.5.	Mucoadhesion studies	161
	3.6.	Statistical analysis	162
4.	Resu	lts and Discussion	163
	4.1.	Preparation and characterization of PLGA-PEG-	163
		PLGA triblock copolymers	103
	4.	1.1. Nuclear magnetic resonance (NMR)	164
	4.	1.2. Gel permeation chromatography (GPC)	167
	4.	1.3. Differential scanning colorimetry (DSC)	170
	4.	1.4. Rheology	171
	4.	1.5. Dynamic light scattering (DLS)	176

	4.2.	Preparation and characterization of plain and TO17-	
		Tw emulsome-loaded PLGA-PEG-PLGA thermogel	178
		solutions	
	4.	2.1. Thermogelation of the copolymer solutions	178
	4.	2.2. Viscosity measurement	184
	4.3.	In vitro release study	189
	4.4.	Mucoadhesion study	191
5. Co	nclus	ions	195
Chap	ter l	V: In vivo Studies on Oxcarbazepine-Loaded	
Emul	some	s and Emulsomal Gels	
1.	Intro	oduction	197
2.	Expe	erimental	199
	2.1.	Materials	199
	2.2.	Animals	199
	2.3.	Equipment	200
3.	Metł	nodology	201
	3.1.	Cytotoxicity study	201
	3.2.	Histopathological study	202
	3.3.	Pharmacokinetic study	203
	3.	3.1. Administration of the formulations to rats	203
	3.	3.2. Assay of oxcarbazepine content in plasma and	204
		brain samples	204
		3.3.2.1. Chromatographic conditions	204
		3.3.2.2. Method validation	205
	3.	3.3. Pharmacokinetic analysis	207
	3.	3.4. Evaluation of brain targeting efficiency	208
4.	Resu	lts and discussion	209
	4.1.	Nasal tolerability studies	209

4.1.1. Cytotoxicity study	209
4.1.2. Histopathological examination	210
4.2. Pharmacokinetic study	215
4.2.1. Validation of OX LC/MS-MS assay method	215
4.2.2. Plasma pharmacokinetic parameters	222
4.2.3. Brain pharmacokinetic parameters	228
4.2.4. Brain transport study using in vivo rat model	234
5. Conclusions	238
Overall conclusion	240
Future perspective	241
Summary	242
References	254
Arabic Summary	١

LIST OF ABBREVIATIONS

AEDs	Antiepileptic drugs
APS	Ammonium per sulphate
AUC _{0-2880 min}	Area under OX concentration-time curve up to 48
	hrs
BBB	Blood-brain-barrier
BBR	Brain/blood ratio
BHT	Butylated hydroxy toluene
С	Compritol
C.V. %	Coefficient of variation
CGT	Critical gelation temperature
C _{max}	Peak plasma and brain concentrations
CNS	Central nervous system
CRC	Chain relaxation capability
CSF	Cerebrospinal fluid
DLS	Dynamic light scattering
DMSO	Dimethyl sulfoxide
DOE	Design of experiments
DR%	Drug retained percent
DSC	Differential scanning calorimetry
DTE %	Drug targeting efficiency
DTI	Drug targeting index
DTP %	Direct nose-to-brain transport percentage
EE%	Entrapment efficiency
FDA	Food and drug administration
FTIR	Fourier transform infrared spectroscopy
G'	Elastic modulus

G''	Viscous modulus
GPC	Gel permeation chromatography
HEPES	Hydroxy ethyl piperazine ethane sulfonic acid
HD	Hydrolytic degradation
IA	Intra-arterial
ICH	The International Council for Harmonisation of
	Technical Requirements for Pharmaceuticals for
	Human Use
IN	Intranasal
IS	Internal standard
IV	Intravenous
K _{el}	Elimination rate constant
LNPs	Lipid nanoparticles
$\mathbf{M}_{\mathbf{c}}$	Molecular weight of the polymer chain between
	two neighboring cross links
MEHQ	Monomethyl ether hydroquinone
MEM	Minimum essential medium
$\mathbf{M}_{\mathbf{n}}$	Number average molecular weight
MRM	Multiple reactions monitoring
MRT	Mean residence time
MTT	3- (4, 5- dimethylthiazol-2-yl) -2, 5- diphenyl
	tetrazolium bromide
$\mathbf{M}_{\mathbf{w}}$	Weight average molecular weight
NADPH	Nicotinamide adenine dinucleotide phosphate
NLCs	Nanostructured lipid carriers
NMR	Nuclear magnetic resonance
OX	Oxcarbazepine
PBS	Phosphate buffer saline

PC	Soya phosphatidylcholine			
PCL	Poly caprolactone			
PDI	Poly dispersity index			
PEG	Polyethylene glycol			
PEGDA	Poly ethylene glycol diacrylate			
РЕТ	Polyethylene terephthalate			
PGA	Poly glycolic acid			
Pk	Pharmacokinetic parameters			
PLA	Poly lactic acid			
PLGA	Poly lactide-co-glycolide			
PVA	Poly vinyl alcohol			
RES	Reticuloendothelial system			
Rpm	Rotation per minute			
$(r_{o}^{2})^{1/2}$	Root-mean-square of the end-to-end distance of the			
	polymer chain in the unperturbed state			
SD	Standard deviation			
SEM	Scanning electron microscopy			
ShR	Shear rate			
SLNs	Solid lipid nanoparticles			
SR	Swelling ratio			
SS	Shear stress			
t _{1/2}	Time to reach half the maximum plasma and brain			
	concentrations			
tan δ	Phase angle			
TEM	Transmission electron microscopy			
TEMED	Tetra ethyl methyl ethylene diamine			
TG	Triglyceride			
T _{max}	Time to reach peak plasma and brain			

	concentrations
ТО	Triolein
ТР	Tripalmitin
TS	Tristearin
Tw	Tween 80
$\mathbf{W}_{\mathbf{d}}$	Weight of dry gels
$\mathbf{W}_{\mathbf{s}}$	Weight of swollen gels
$\mathbf{W}_{\mathbf{u}}$	Weight of deionized water
Wu%	Water uptake capacity
ξ	Mesh size
$\nu_{2,\mathbf{r}}$	polymer volume fraction in the relaxed state
$v_{2,s}$	Polymer volume fraction in the swollen state

LIST OF TABLES

Table No.	Table name	Page
1	Nomenclature and compositions of different OX- emulsomal formulations	40
2	Calibration curve data for OX in phosphate buffer pH 6.8 containing 5% methanol at λ_{max} 305 nm	47
3	Calibration curve data for OX in 1% Triton X 100 at λ_{max} 305 nm	48
4	The effect of drug concentration on the EE% of OX- emulsomes prepared using PC and C in a ratio of 2:1 and total lipid amount of 30 mg	51
5	Entrapment efficiency percents of different OX- emulsomal formulations	58
6	Size and poly dispersity index measurements of different OX-emulsomal formulations	60
7	Zeta potential values for different OX-emulsomal formulations	65
8	Best selected OX-emulsomal formulations with size<200 nm and EE% >60%	66
9	Stability study of selected OX-emulsomes during 3 months storage at refrigeration temperature	74
10	Coding, compositions and fabrication conditions of plain PEGDA cryogel	88
11	Factors and levels used in the factorially designed experiment for the preparation of plain PEGDA based cryogels	96

12	Shear stress versus shear rate of plain cryogels B9-	101
	C12, prepared from 2.5% PEGDA	
13	Shear stress versus shear rate of plain cryogels D3-	102
	F12, prepared from 5% PEGDA	102
14	Shear stress versus shear rate of plain cryogels G3-	103
	I12, prepared from 10% PEGDA	103
15	Effect of rpm increase on the viscosities of plain	
	cryogels frozen for different time intervals and	106
	prepared using 10% w/v PEGDA and 1 mM (a), 5	107
	mM (b) and 10 mM (c) of APS/TEMED	
16	Effect of rpm increase on the viscosities of plain	
	cryogels frozen for different time intervals and	109
	prepared using 5% w/v PEGDA and 1 mM (a), 5 mM	110
	(b) and 10 mM (c) of APS/TEMED	
17	Effect of rpm increase on the viscosities of plain	
	cryogels frozen for different time intervals and	112
	prepared using 2.5% w/v PEGDA and 1 mM (a), 5	113
	mM (b) and 10 mM (c) of APS/TEMED	
18	ANOVA table for the viscosity of plain PEGDA	
	cryogels measured at 0.5 rpm, according to the	120
	factorial design	
19	Main effects of different factors on the mean	
	viscosity (measured at 0.5 rpm) of plain PEGDA	121
	cryogels	
20	Two-way interaction results of different factors on	
	the mean viscosity (measured at 0.5 rpm) of plain	124
	PEGDA cryogels	

21	Three-way interaction results of different factors on the mean viscosities (measured at 0.5 mm) of plain	125
	PEGDA cryogels	125
22	Parameters for swelling ratios and water uptake	130
	different concentrations of PEGDA	150
23	Network structure characterization of plain cross- linked cryogels prepared with different concentrations of PEGDA	135
24	Hydrolytic degradation of plain cryogels B9, E9 and H9 expressed as % of mass loss after soaking in water for weeks	137
25	Viscosities of plain and OX-emulsome loaded B9 cryogel measured at different rpm values	141
26	Mean OX released from TO17-Tw emulsomes versus the emulsomal embedded cryogel TO17- Tw/B9	143
27	Composition of the synthesized plain PLGA-PEG- PLGA triblock copolymer	155
28	Coding and compositions of prepared PLGA-PEG- PLGA thermogels	160
29	Peak areas of prominent signals obtained from the NMR spectrum of plain PLGA-PEG-PLGA copolymer by integration of the peaks	166
30	Calculation of the number molecular weight Mn of plain PLGA-PEG-PLGA polymer using H1 NMR integrated signals	167