
AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Joint Channel and Phase Noise Estimation in OFDM

Systems

A Thesis submitted in partial fulfillment of the requirements of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Ahmed Deiaa Mohamed Talaat Ahmed

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2011

Supervised By

Prof.Dr. Salwa Hussein Abdel Fattah El-Ramly

Dr. Bassant Abdelhamid Mohamed

Dr. Amr Mohamed Fawzy El-Keyi

Cairo, 2017





AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Joint Channel and Phase Noise Estimation in OFDM

Systems

by

Ahmed Deiaa Mohamed Talaat Ahmed

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2011

Examiners’ Committee

Name and affiliation Signature

Prof.Dr. Said E. El-Khamy

Electrical Engineering Dept.

Faculty of Engineering, Alexandria University.

. . . . . . . . . . . . . . . . . . . . .

Prof.Dr. Abdelhalim A. Zekry

Electronics and Communications Engineering Dept.

Faculty of Engineering, Ain Shams University.

. . . . . . . . . . . . . . . . . . . . .

Prof.Dr. Salwa H. El-Ramly

Electronics and Communications Engineering Dept.

Faculty of Engineering, Ain Shams University.

. . . . . . . . . . . . . . . . . . . . .

Date:15/7/2017





Statement

This thesis is submitted as a partial fulfillment of Master of Science

in Electrical Engineering, Faculty of Engineering, Ain shams Univer-

sity. The author carried out the work included in this thesis, and no

part of it has been submitted for a degree or a qualification at any

other scientific entity.

Ahmed Deiaa Mohamed Talaat Ahmed

Signature

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: 15/7/2017





Researcher Data

Name: Ahmed Deiaa Mohamed Talaat Ahmed

Date of Birth: 02/09/1988

Place of Birth: Kuwait, Kuwait

Last academic degree: Bachelor of Science

Field of specialization: Electronics and Communication Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2011

Current job : System Design Engineer





Thesis Summary

Orthogonal Frequency Division Multiplexing (OFDM) systems are highly used in mod-

ern standards such as LTE, WiMax and DVB because of their practical and simple

hardware implementation as well as their robustness against frequency selective chan-

nels and inter-symbol interference(ISI).

However, OFDM systems are very sensitive to phase noise and doubly-selective channels

that cause inter-carrier interference (ICI) to the received signal. The resulting ICI can

cause severe performance degradation for OFDM systems.

This thesis is concerned with the mitigation of both doubly selective channels and phase

noise effects in OFDM systems. The effects of both doubly selective channels and phase

noise in OFDM systems are studied and an algorithm is proposed to mitigate both effects

by applying an iterative decision-directed feedback method where the most significant

ICI components are estimated. Moreover, the error propagation that occurs from one

iteration to the next is reduced by using the estimated doubly selective channels and by

reducing the residual phase noise.

The thesis starts with an overview on the OFDM technique where an introduction to

its main idea is provided as well as its main advantages and disadvantages.

Then, a detailed study is provided for the effects of both phase noise and doubly selective

channels as well as a literature review for the recent proposed algorithms for mitigating

them.

Finally, an algorithm is proposed to mitigate these effects and simulation results are

presented to show the performance versus the perfect decision directed feedback case

for different system and design parameters. The simulation results have shown that

the proposed algorithm achieves a significant performance close to the perfect decision

directed feedback case for different practical standards channel models as well as different

modulation orders.

Key words: Doubly selective channels, Inter-Carrier Interference (ICI), Orthogonal

Frequency Division Multiplexing (OFDM), phase noise, iterative decision-directed

feedback.
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