

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Joint Channel and Phase Noise Estimation in OFDM Systems

A Thesis submitted in partial fulfillment of the requirements of Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications)

 $\mathbf{b}\mathbf{y}$

Ahmed Deiaa Mohamed Talaat Ahmed

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

Supervised By

Prof.Dr. Salwa Hussein Abdel Fattah El-Ramly Dr. Bassant Abdelhamid Mohamed Dr. Amr Mohamed Fawzy El-Keyi

Cairo, 2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Joint Channel and Phase Noise Estimation in OFDM

Systems

by

Ahmed Deiaa Mohamed Talaat Ahmed

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

Examiners' Committee

Name and affiliation

Signature

Prof.Dr. Said E. El-Khamy

Electrical Engineering Dept. Faculty of Engineering, Alexandria University.

Prof.Dr. Abdelhalim A. Zekry

Prof.Dr. Salwa H. El-Ramly

Date:15/7/2017

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

> Ahmed Deiaa Mohamed Talaat Ahmed Signature

.....

Date: 15/7/2017

Researcher Data

Name: Ahmed Deiaa Mohamed Talaat Ahmed
Date of Birth: 02/09/1988
Place of Birth: Kuwait, Kuwait
Last academic degree: Bachelor of Science
Field of specialization: Electronics and Communication Engineering
University issued the degree : Ain Shams University
Date of issued degree : July 2011
Current job : System Design Engineer

Thesis Summary

Orthogonal Frequency Division Multiplexing (OFDM) systems are highly used in modern standards such as LTE, WiMax and DVB because of their practical and simple hardware implementation as well as their robustness against frequency selective channels and inter-symbol interference(ISI).

However, OFDM systems are very sensitive to phase noise and doubly-selective channels that cause inter-carrier interference (ICI) to the received signal. The resulting ICI can cause severe performance degradation for OFDM systems.

This thesis is concerned with the mitigation of both doubly selective channels and phase noise effects in OFDM systems. The effects of both doubly selective channels and phase noise in OFDM systems are studied and an algorithm is proposed to mitigate both effects by applying an iterative decision-directed feedback method where the most significant ICI components are estimated. Moreover, the error propagation that occurs from one iteration to the next is reduced by using the estimated doubly selective channels and by reducing the residual phase noise.

The thesis starts with an overview on the OFDM technique where an introduction to its main idea is provided as well as its main advantages and disadvantages.

Then, a detailed study is provided for the effects of both phase noise and doubly selective channels as well as a literature review for the recent proposed algorithms for mitigating them.

Finally, an algorithm is proposed to mitigate these effects and simulation results are presented to show the performance versus the perfect decision directed feedback case for different system and design parameters. The simulation results have shown that the proposed algorithm achieves a significant performance close to the perfect decision directed feedback case for different practical standards channel models as well as different modulation orders.

Key words: Doubly selective channels, Inter-Carrier Interference (ICI), Orthogonal Frequency Division Multiplexing (OFDM), phase noise, iterative decision-directed feedback.

Acknowledgment

First and above all, I praise Allah, the almighty for providing me this opportunity to enrich my practical knowledge and for helping me in every single step to complete this thesis.

This thesis would not be completed and would not be finished in such form without the help and guidance of several people that I would like to express my deepest gratitude to them.

I would like to express my deepest gratitude for my supervisors: Prof.Dr. Salwa El-Ramly, Dr. Bassant Abdelhamid and Dr. Amr El-Keyi, for their amazing support that they have provided to me. This thesis would not be ever completed in such a shape without their valuable advice and comments which benefit me alot to enrich my scientific and practical knowledge.

Also, I would like to express my deepest gratitude to my family: my father, my mother and my sister for their continuous support and prayers that without them, I wouldn't be able to complete such work after all the drawbacks that I have faced. They were always encouraging me and giving me all the needed strength and determination to complete this thesis.

Finally, I would like to thank every one who had taught me and helped me to complete this thesis. May Allah bless you all.

Contents

Co	onten	ts		xi
Lis	st of	Figures		xiv
Lis	st of	Tables	Х	vii
Lis	st of	Abbreviations	X	viii
Lis	st of	Symbols		xx
1	Intr 1.1 1.2 1.3	oductionThesis ObjectivesMain ContributionsThesis Organization		1 2 3 3
2	Ort 2.1 2.2 2.3 2.4 2.4	hogonal Frequency Division MultiplexingBasic Idea and Orthogonality PrincipleCyclic Prefix InsertionMitigation of Frequency Selective Channels2.3.1Pilots Structures2.3.1.1Block Structure2.3.1.2Comb Structure2.3.1.3Scattered Structure2.4.1OFDM Advantages2.4.2OFDM Disadvantages2.4.2.1Timing Offset Effect2.4.2.2Analog Front End RF Impairments Effect2.4.2.3Peak to Average Power Ratio		5 9 12 16 16 17 17 18 19 20 22 25 26
3	Dou 3.1 3.2	bly Selective Channels and Phase Noise Effect on OFDMLiterature Review3.1.1Phase Noise Mitigation3.1.2Doubly Selective Channels Mitigation3.1.3Doubly Selective Channels and Phase Noise MitigationPhase Noise Effect on OFDM Systems		 29 30 30 32 35 35

		3.2.1 Autocorrelation Function of Phase Noise			41
	3.3	Doubly	Doubly Selective Channels Effect on OFDM Systems 42		
		3.3.1	.1 Types of Small Scale Fading Channels		
			3.3.1.1 Slo	w Fading	44
			3.3.1.2 Fas	t Fading	44
			3.3.1.3 Fla	t Fading	45
			3.3.1.4 Fre	quency Selective Fading	45
		3.3.2	System Mod	el of Doubly Selective Channels	46
		3.3.3	3.3 Statistical Properties of Doubly Selective Channels		49
			3.3.3.1 ICI	Variance	49
			3.3.3.2 Au	to correlation Function	52
		3.3.4	Linear Appro	oximation of Doubly Selective Channels	54
	3.4	4 Doubly Selective Channels and Phase Noise Effects on OFDM Systems		57	
	3.5	Chapt	er Summary		60
	Ъ				
			Almonithere a	and Cimeral attem Description	CO
4	Pro	posed	Algorithm a	nd Simulation Results	63
4	Pro 4.1	Proposed	Algorithm a sed Algorithm	nd Simulation Results	63 64
4	Pro 4.1	Proposed 4.1.1	Algorithm a sed Algorithm Channel Esti	ind Simulation Results	 63 64 65 67
4	Pro 4.1	posed Propos 4.1.1 4.1.2	Algorithm a sed Algorithm Channel Esti Phase Noise	Ind Simulation Results	 63 64 65 67 71
4	Pro 4.1	Proposed 4.1.1 4.1.2 4.1.3 4.1.4	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Selec	Ind Simulation Results Imation in the First Iteration Estimation and Compensation Estimation and Compensation Interview Channels Estimation and Cancellation	 63 64 65 67 71 72
4	Pro 4.1	Proposed 4.1.1 4.1.2 4.1.3 4.1.4 4.1.4	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement	and Simulation Results imation in the First Iteration	 63 64 65 67 71 73 76
4	4.1	Proposed 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity	Ind Simulation Results Imation in the First Iteration Estimation and Compensation Estimation and Cancellation Estimation and Cancellation	 63 64 65 67 71 73 76 70
4	4.1 4.2	Proposed 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity L tion Results	and Simulation Results imation in the First Iteration	 63 64 65 67 71 73 76 79 80
4	4.1 4.2	Proposed Propose 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Pagulta of th	and Simulation Results imation in the First Iteration Estimation and Compensation estimation and Compensation estive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm a Improvements to the Proposed Algorithm	 63 64 65 67 71 73 76 79 80 80
4	4.1 4.2	Proposed Propose 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapt	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Results of th	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation etive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm	 63 64 65 67 71 73 76 79 80 89 95
4	4.14.24.3	Propos 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapte	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Results of th er Conclusion	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation etive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm	 63 64 65 67 71 73 76 79 80 89 95
4	 4.1 4.2 4.3 Con 	Propos 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapte	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity L tion Results Results of th Results of th er Conclusion as and Futur	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation etive Channels Estimation and Cancellation is to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm s re Work	 63 64 65 67 71 73 76 79 80 89 95 97
4 5	 4.1 4.2 4.3 Com 5.1 	Proposed Propose 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapte Conclusion	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Results of th er Conclusion as and Future usions	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation etive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm s re Work	 63 64 65 67 71 73 76 79 80 89 95 97 97
4 5	 4.1 4.2 4.3 Com 5.1 5.2 	posed Proposed 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapte Conclusion Conclusion	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Results of th Results of th er Conclusion as and Future Isions Work	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation etive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm s re Work	 63 64 65 67 71 73 76 79 80 89 95 97 98
4 5	 4.1 4.2 4.3 Com 5.1 5.2 	posed Proposed 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Simula 4.2.1 4.2.2 Chapte Conclusion Future	Algorithm a sed Algorithm Channel Esti Phase Noise Doubly Select Improvement Complexity A tion Results Results of th Results of th Results of th er Conclusion as and Futur Isions Work	and Simulation Results imation in the First Iteration Estimation and Compensation Estimation and Compensation estive Channels Estimation and Cancellation as to the Proposed Algorithm Analysis of the Proposed Algorithm e Proposed Algorithm e Improvements to the Proposed Algorithm s re Work	 63 64 65 67 71 73 76 79 80 89 95 97 98

Appendix A	Simple example for equation 4.16	101

References

103

List of Figures

2.1	A simple representation of FDM and OFDM systems	6
2.2	OFDM basic transmitter.	7
2.3	OFDM basic transmitter and receiver.	8
2.4	Received signal in multipath channel and inter-symbol interference	
	effect.	9
2.5	OFDM symbol with CP inserted.	10
2.6	Received signal with CP added in multipath channel.	11
2.7	OFDM spectrum and frequency selective channel response	13
2.8	OFDM transmitter and receiver with channel estimation	13
2.9	Channel estimation using pilots and linear interpolation for the data	
	subcarriers	14
2.10	Block pilot structure.	16
2.11	Comb pilot structure.	17
2.12	Scattered pilot structure	18
2.13	Signal autocorrelation and estimated time offset for $N = 8192$	22
2.14	Transmitter and receiver direct conversion architecture	23
2.15	SFO effect on the received signal.	25
0.1		97
ა.1 ე.ე	Phase noise effect on the oscillator frequency	37
3.2 2.2	Phase holse PSD for different relative phase holse bandwidths (δ_p) . OPSK constellation points for phase points values $(\delta_p - 3 \times 10^{-5} \text{ s})$	37
0.0	$(Q_1 \text{ SK constention points for phase noise values } (b_p = 3 \times 10^{-4})$, 3×10^{-4}) at the demapper input in the receiver	40
3 /	OPSK constellation points for phase noise values ($\delta = 3 \times 10^{-3} - 0.03$)	10
0.4	at the demapper input in the receiver	41
3.5	OPSK constellation points for phase noise values ($\delta_{\tau} = 0.06, 0.12$)	
0.0	at the demapper input in the receiver. $(p_p) = 0.00, 0.12$	41
3.6	Phase noise ICI variance for different δp values.	43
3.7	Combinations of different channel types [10].	46
3.8	Absolute value of the actual channel frequency response for the	
	main diagonal in case of frequency selective channels.	49
3.9	ICI variance versus d for FFT size = 8192, WSSUS Rayleigh fading	
	and various f_d .	52
3.10	Absolute autocorrelation versus Δk for FFT size = 8192,WSSUS	
	Rayleigh fading and $f_d = 0.04$	53
3.11	Absolute autocorrelation versus Δk for FFT size = 8192, WSSUS	
	Develop for diagram and $f = 0.1$	52
	Rayleigh lading and $f_d = 0.1$.	55

3.12	Linear model approximation of the channel impulse response over the OEDM symbol: (colid) for the original channel response and	
	(dash) for the linear approximated response [29]	54
3.13	Absolute value of the actual channel impulse response compared to	
914	its linear approximated counterpart for $f_d = 0.1.$	55
3.14	onal compared to its linear approximated counterpart for $f_d = 0.1$.	56
3.15	Absolute value of the actual frequency response for the first super	
	diagonal compared to its linear approximated counterpart for $f_d = 0.1$.	57
3.16	Simple OFDM transmitter and receiver with doubly selective chan-	57
	ner, phase noise and Awon being applied.	51
4.1	Block diagram of the proposed algorithm at the receiver.	64
4.2	Signal detection and decision directed signal generation	67 67
4.3	Block diagram of phase noise estimation.	60
4.4	Phase horse realization using different spectral components Block diagram of phase poise componention	09 70
4.5	Block diagram of doubly selective channels estimation	70 71
4.7	Tails in the estimated phase noise realization due the truncated DFT.	74
4.8	Tails elimination at the beginning of the OFDM symbol.	75
4.9	Tails elimination at the end of the OFDM symbol	76
4.10	BER performance of the proposed algorithm for normalized Doppler	
	frequency $(f_d)=0.07$ and relative phase noise bandwidth $(\delta_p)=0.1$.	81
4.11	BER performance of the proposed algorithm versus iteration index	
	for normalized Doppler frequency $(f_d)=0.07$ and relative phase noise	00
4 1 9	bandwidth $(o_p) = 0.1$ at $E_b/N_o = 30$ dB	82
4.12	iteration index and versus different E_h/N_o values respectively for	
	normalized Doppler frequency $(f_d)=0.07$ and relative phase noise	
	bandwidth $(\delta_p) = 0.1$.	83
4.13	BER performance of the proposed algorithm for normalized Doppler	
	frequency $(f_d)=0.09$ and relative phase noise bandwidth $(\delta_p)=0.04$	
	showing the effect of using the tail elimination (TE) and using the	ດາ
1 11	BFB performance for different normalized Doppler frequencies (f.)	00
4.14	at $E_b/N_o = 30$ dB for different phase noise relative bandwidths (δ_n) .	84
4.15	BER performance for different u at normalized Doppler frequency	
	$(f_d)=0.06$ and different phase noise relative bandwidths (δ_p) .	85
4.16	BER performance for different u at normalized Doppler frequency	
	$(f_d)=0.1$ and different phase noise relative bandwidths (δ_p)	85
4.17	BER performance for different B at phase noise relative bandwidth $(\xi) = 0.06$ and different permutation for each different permutation (f_{1})	06
110	$(o_p) = 0.00$ and different normalized Doppler frequencies (J_d) BFB performance for different R at phase poice relative bandwidth	80
4.10	$(\delta_{\sigma})=0.1$ and different normalized Doppler frequencies (f_{σ})	86
4.19	BER performance of the proposed algorithm in EVA 70Hz channel.	87