

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRIC POWER AND MACHINE DEPARTMENT

# IMPROVEMENT OF DIRECT TORQUE CONTROL FOR THREE PHASE INDUCTION MOTOR USING ARTIFICIAL INTELLIGENCE TECHNIQUE

BY

Ismail Youseef Mohamed Hassan

B.SC., Ain Shams University 2002

A thesis submitted to Ain Shams University for the requirements of the degree of MASTER OF SCINCE in ELECTRICAL ENGINEERING Power and Machine

Under supervision of

**Prof. Dr. Ahmed Abd EL-Sattar Abd El-Fattah** Electrical power and machine department Faculty of engineering Ain Shams University

# Dr. Naggar Hassan Saad

Electrical power and machine department Faculty of engineering Ain Shams University

# Cairo 2010

#### ACKNOWLEDGEMENTS

I have the pleasure to express my deep gratitude and appreciation to my supervisors:

**Prof. Dr. Ahmed Abd El-Sattar** for his supervision on this research, his guidance and support during various phases of this work, his encouragement and his valuable suggestions through the progress of this work.

**Dr. Naggar Hassan saad** for suggesting the topic of the thesis, for valuable feedback and suggestions that enhance the content and the presentation of the thesis, for deep guidance and for the time he devoted during the preparation of this research.

#### ABSTRACT

Direct torque control (DTC) of an induction motor fed by a voltage source inverter is a simple scheme that does not need long computation time, can be implemented without mechanical speed sensors and is insensitive to motor parameter variations. In principle, the motor terminal voltages and currents are sampled and used to estimate the motor flux linkage and electromagnetic torque. Based on estimating of the flux position and the instantaneous errors in torque and stator flux magnitudes, a voltage vector is selected to restrict the torque and the flux errors within their respective torque and flux hysteresis bands.

In conventional direct torque control, the traditional proportional integral (PI) controller when used as a speed controller needs its parameters to be retuned every time the operating point is changed because of the induction machine behavior is highly nonlinear. In the first part of this thesis a fuzzy speed controller with modified voltage vector selection algorithm using artificial neural network is presented for adjustable speed DTC based induction motors driven using three level inverter. The three level inverter is used to modify the voltage vector selection algorithm because the voltage selection possibilities are enhanced since more inverter states are available. The full and intermediate voltage vectors are used to overcome the flux demagnetization problem associated with the low speed operation and at motor starting. Simulation results confirm the superiority of the presented controller in fast speed tracking capability over wide speed control range without affecting system stability.

In addition to the above in the conventional DTC, the selected voltage vector is applied for the whole switching period regardless of the magnitude of the torque error. Moreover, the selected voltage vector always cannot generate the exact stator voltage required to obtain the demanded electromagnetic torque and stator flux linkage. This can result in high torque ripples.

In the second part of this thesis, torque ripple reduction algorithm using fuzzy logic control is proposed. This algorithm depends on varying the duty ratio of the selected voltage vector during each switching period according to the magnitude of the torque error and position of the stator flux. Moreover, another voltage vector selection algorithm modified especially for reducing the torque ripples is presented using three level inverter with artificial neural network as a voltage vector selector instead of conventional look-up tables. Simulation results justify the validity of the proposed method in reducing the motor torque ripples.

# TABLE OF CONTENTS

| LIST OF FIGURES                                                                                      | VII  |
|------------------------------------------------------------------------------------------------------|------|
| LIST OF TABLES                                                                                       | X    |
| LIST OF SYMBOLES                                                                                     | XI   |
| LIST OF ABBREVIATIONS                                                                                | XIII |
| CHAPTER (1) INTRODUCTION                                                                             | 1    |
| 1.1. General                                                                                         | 1    |
| 1.2. Statement Of The Problem                                                                        | 4    |
| 1.3. Overview Of The Thesis                                                                          | 6    |
| CHAPTER (2) MATHEMATICAL MODEL OF THE INDUCTION MACHINE                                              | 8    |
| 2.1. Introduction                                                                                    | 8    |
| 2.2. Induction Motor Mathematical Model                                                              | 9    |
| 2.2.1. Axes transformation                                                                           | 10   |
| 2.2.2. Dynamic model of the induction machine referred to the synchronously rotating reference frame |      |
| 2.2.3. Dynamic model of the induction machine referred to the stationary reference frame             | 16   |
| 2.3. Simulation of an induction machine in the stationary reference frame                            | 19   |
| CHAPTER (3) VECTOR AND DIRECT TORQUE CONTROL_OF INDUCTION MACHINE                                    | E22  |
| 3.1. Introduction                                                                                    | 22   |
| 3.2. Scalar Control                                                                                  | 23   |
| 3.3. Vector Control                                                                                  | 25   |
| 3.3.1. Direct or Feedback Vector Control                                                             | 27   |
| 3.3.2. Flux Vector Estimation:                                                                       | 29   |
| 3.3.2.1.Voltage Model                                                                                | 29   |
| 3.3.2.2.Current Model                                                                                | 30   |
| 3.3.3. Indirect or Feedforward Vector Control                                                        | 32   |
| 3.3.4. Limitations of Vector Control                                                                 | 35   |
| 3.4. Sensorless Vector Control:                                                                      | 36   |
| 3.5. Direct Torque Control (DTC)                                                                     | 38   |
| 3.5.1. Electromagnetic torque equation:                                                              |      |
| 3.5.2. Space voltage vectors of the two level voltage source inverter                                | 41   |
| 3.5.3. Stator flux control                                                                           | 43   |
| 3.5.4. Control strategy of DTC                                                                       | 46   |
| 3.5.5. Main advantages and disadvantages of DTC                                                      | 53   |
| CHAPTER (4) MODIFIED VOLTAGE VECTOR SELECTION_ALGORITHM USING NEU                                    | JRAL |
| NETWORK                                                                                              | 54   |
| 4.1. General                                                                                         | 54   |
| 4.2. Space voltage vector of the three level inverter                                                | 54   |
| 4.3. DTC of induction motor driven by three level inverter                                           | 60   |
| 4.3.1. Flux and Double Band Torque Hysteresis Comparators                                            | 61   |
| 4.3.2. Three level inverter voltage vector selection algorithm                                       | 63   |
| 4.3.3. Stator Flux Demagnetization Problem                                                           | 65   |
| 4.4. Voltage vector selection using Artificial Neural Networks (ANN)                                 | 69   |
| 4.4.1. Artificial Neuron                                                                             | 69   |

| 4.5. Proposed ANN architectural                                                              | .73 |
|----------------------------------------------------------------------------------------------|-----|
| 4.5.1. Basic switching voltage vector selection using ANN                                    | .73 |
| 4.5.2. Low speed switching voltage vector selection using ANN                                | .76 |
| CHAPTER (5) DIRECT TORQUE FUZZY CONTROLLED ADJUSTABLE SPEED DRIVE                            | .78 |
| 5.1. General                                                                                 | .78 |
| 5.2. Introduction to Fuzzy logic                                                             | .79 |
| 5.2.1 Fuzzy set theory                                                                       | .79 |
| 5.2.2 Fuzzy rules:                                                                           | .80 |
| 5.2.3 Fuzzy logic controller                                                                 | .81 |
| 5.3. Fuzzy logic adjustable speed DTC-based drive                                            | .82 |
| 5.4. Fuzzy logic controller steps of operation                                               | .86 |
| 5.5. Simulation results                                                                      | .89 |
| 5.5.1. Fuzzy controller response to various step input speed references at full load running | 90  |
| 5.5.2. Fuzzy controller response for sequential changes in the speed input reference         | .92 |
| .5.5.3 Fuzzy controller dynamic response for load disturbance                                | .96 |
| 5.5.4. Modified switching strategy at low speed operation                                    | .98 |
| CHAPTER (6) FUZZY ADAPTIVE TORQUE RIPPLES MINIMIZATION1                                      | 104 |
| 6.1 Introduction                                                                             | 104 |
| 6.2 Modified voltage vector selection algorithm for torque ripple reduction1                 | 107 |
| 6.3 Modified switching voltage vector selection using ANN for torque ripples reduction1      | 110 |
| 6.4 DTC with the adaptive duty ratio fuzzy logic controller1                                 | 112 |
| 6.5 Simulation results1                                                                      | 120 |
| 6.5.1. Adaptive fuzzy controller response for constant torque reference                      | 120 |
| CHAPTER (7) CONCLUSION AND RECOMMENDATION1                                                   | 136 |
| 7.1. Conclusion                                                                              | 136 |
| 7.1.1. Adjustable speed DTC-based induction motor drive                                      | 136 |
| 7.1.2. DTC with the adaptive duty ratio fuzzy logic control                                  | 137 |
| 7.2. Suggestions for future work                                                             | 137 |
| APPENDIX1                                                                                    | 138 |
| MOTOR PARAMETERS AND DATA                                                                    | 138 |
| REFERENCES 1                                                                                 | 140 |

## LIST OF FIGURES

| Fig. 2.1 Relation between (as,bs,cs), (ds-qs), (dr-qr) and $(d_a^e q^e)$ reference frames10                                    |
|--------------------------------------------------------------------------------------------------------------------------------|
| <b>Fig. 2.2.</b> - Dynamic $d^e$ , $q^e$ equivalent circuit of machine (a) $q^e$ - axis circuit, (b) $d^e$ - axis circuit 1 14 |
| Fig. 2.3 Dynamic $d^{s}$ , $q^{s}$ equivalent circuit of machine (a) $q^{s}$ - axis circuit, (b) $d^{s}$ - axis circuit 17     |
| Fig. 2. 4 Stationary reference frame induction machine model                                                                   |
| Fig. 3. 1 The closed loop speed control with volts/Hz control and slip regulation                                              |
| Fig. 3. 2 Principals of vector control (a) Increase of torque component of current. (b) Increase of flux                       |
| component of current 26                                                                                                        |
| Fig. 3. 3 Direct vector control block diagram with rotor flux orientation                                                      |
| Fig. 3. 4 $d^{s}-q^{s}$ and $d^{e}-q^{e}$ phasors showing the correct rotor flux orientation                                   |
| Fig. 3. 5 Indirect vector control block diagram with open loop flux control                                                    |
| Fig. 3. 6 Stator flux and rotor flux vectors on $d^{s}-q^{s}$ plan (Stator resistance is neglected)39                          |
| Fig. 3 .7 Two level voltage source inverter fed induction motor41                                                              |
| Fig. 3. 8 The six sectors of the flux plane and possible voltage vectors for two level voltage source                          |
| inverter                                                                                                                       |
| Fig. 3. 9 Stator flux variation in time $\Delta t$ corresponding to each of the six voltage vectors45                          |
| Fig. 3. 10 Block diagram of conventional adjustable speed Direct Torque Controlled induction                                   |
| motor drive47                                                                                                                  |
| Fig. 3.11 Torque and flux hysteresis comparators48                                                                             |
| Fig. 3. 12 Stator flux trajectory in DTC 50                                                                                    |
| Fig. 3. 13 Basis of voltage vectors selection. FI: flux increase; FD: flux decrease; TI: torque                                |
| increase; TD: torque decrease                                                                                                  |
| Fig. 4. 1 Three level voltage source inverter fed induction motor                                                              |
| Fig. 4. 2 Gating signals for the switches in branch a                                                                          |
| Fig. 4. 3 The 27 <sup>th</sup> output voltage vectors of three level voltage source inverter                                   |
| Fig. 4. 4 Torque and flux hysteres is comparators62                                                                            |
| Fig. 4. 5 Torque slope pattern for the two and three level inverters                                                           |
| Fig. 4. 6(a) - Demagnetization by nonzero voltage vector66                                                                     |
| Fig. 4. 6(b) - Demagnetization by zero voltage vector66                                                                        |
| Fig. 4. 6 Flux demagnetization problem at low speed operation.                                                                 |
| Fig. 4. 7 Voltage vector selection in low speed operation67                                                                    |
| Fig. 4. 8 Structure of artificial neuron70                                                                                     |
| <b>Fig. 4.9</b> Most common activation functions of artificial neuron 71                                                       |
| rg. 4.3 Most common activation functions of artificial field off                                                               |

| Fig. 4.11 Structure of proposed 3-6-3 basic neural network voltage vector selector                         | 74   |
|------------------------------------------------------------------------------------------------------------|------|
| Fig. 4.12 Structure of proposed 2-5-4-3 Modified neural network voltage vector selector for lo             | W    |
| speed operation                                                                                            | . 76 |
| Fig. 5.1 Mamdani Fuzzy logic controller                                                                    | . 81 |
| Fig. 5.2 - Proposed DTC-Based fuzzy adjustable speed drive                                                 | . 82 |
| Fig. 5.3 - Block diagram of PD-type fuzzy logic speed controller                                           | . 83 |
| Fig. 5. 4 Membership functions for (a) speed error $E$ , (b) change in speed error $\Delta E$ , (c) change | in   |
| output Δ <i>u(t)</i>                                                                                       | . 85 |
| Fig. 5. 5 Fuzzification of the two crisp inputs ( $E_{A}\Delta E$ )                                        | 87   |
| Fig. 5. 6 The description of steps 2, 3, 4 and 5 for Rule (1)                                              | 88   |
| Fig. 5. 7 Center of gravity defuzzification method                                                         | 89   |
| Fig. 5. 8.(a) - Speed reference 300 rpm                                                                    | . 90 |
| Fig. 5. 8.(b) - Speed reference -1000 rpm                                                                  | . 91 |
| Fig. 5. 8.(c) - Speed reference -1400 rpm                                                                  | 91   |
| Fig. 5. 9 Stator flux trajectory for one revolution only                                                   | 92   |
| Fig. 5. 10.(a) - Speed reference command                                                                   | .93  |
| Fig. 5. 10.(b) - After the speed reference has been changed from 1400 to 800 rpm                           | 94   |
| Fig. 5. 10.(c) - After the speed reference has been changed from 800 to 300 rpm                            | 94   |
| Fig. 5. 10 Response of the fuzzy controller against PI controller for sequential changes in the            |      |
| speed reference                                                                                            | . 94 |
| Fig. 5. 11.(a) - Electromagnetic torque                                                                    | . 95 |
| Fig. 5. 11.(b) - Stator phase current i <sub>a</sub>                                                       | . 95 |
| Fig. 5. 11. Torque and stator current ia for sequential change in the speed reference for Fuzzy            |      |
| controller                                                                                                 | 95   |
| Fig. 5. 12.(a) - Electromagnetic torque                                                                    | .96  |
| Fig. 5. 12.(b) - Motor stator current                                                                      | 97   |
| Fig. 5.12.(c) - Fuzzy logic controller speed response                                                      | . 97 |
| Fig. 5. 12.(d) - PI controller speed response                                                              | . 98 |
| Fig. 5. 12 Comparison of load disturbance rejection responses for Fuzzy logic and PI controllers           | 98   |
| Fig. 5. 13 Electromagnetic torque control                                                                  | . 99 |
| Fig. 5. 14 Stator flux magnitude using conventional two level inverter                                     | 100  |
| Fig. 5. 15 Stator flux magnitude using three level inverter with modified voltage vector selector          | or   |
| neural network                                                                                             | 100  |
| Fig. 5. 16 Flux trajectory comparison at the motor stating                                                 | 101  |
| Fig. 5. 17 Switching frequency using fuzzy logic speed controller                                          | 102  |
| Fig. 5. 18 Stator current THD using proposed control scheme                                                | 103  |

| Fig. 5. 19 Stator current THD using conventional two level inverter                                   | 103   |
|-------------------------------------------------------------------------------------------------------|-------|
| Fig. 6. 1 Effect of the duty ratio control on the torque ripples                                      | . 106 |
| Fig. 6. 2 Modified torque and flux hysteresis comparators                                             | . 108 |
| Fig. 6. 3 Modified torque slope pattern for the three level inverter used in torque ripple            |       |
| reduction algorithm                                                                                   | 108   |
| Fig. 6. 4 Structure of proposed 3-5-3 Modified neural network voltage vector selector                 | 111   |
| Fig. 6. 5 Proposed DTC with the duty ratio Fuzzy logic controller                                     | . 113 |
| Fig. 6. 6 Membership functions for main fuzzy logic controller (a) torque error, (b) stator flux      |       |
| position , (c) duty ratio                                                                             | 114   |
| Fig. 6. 7 Main fuzzy logic controller surface for positive flux error                                 | 117   |
| Fig. 6. 8 Main fuzzy logic controller surface for negative flux error                                 | 117   |
| Fig. 6. 9 Membership functions for (a) torque increment, (b) torque error, (c) change in duty ratio   | 118   |
| Fig. 6. 10 Electromagnetic torque using Conventional DTC                                              | 121   |
| Fig. 6. 11 Electromagnetic torque using DTC                                                           | 121   |
| Fig. 6. 12 d-axis stator voltage using Conventional DTC                                               | 122   |
| Fig. 6.13 d-axis stator voltage using DTC with the duty ratio fuzzy control                           | 122   |
| Fig. 6. 14 Voltage and torque switching in conventional DTC                                           | . 124 |
| Fig. 6. 15 Voltage and torque switching in DTC with the duty ratio fuzzy control                      | 124   |
| Fig. 6.16 Stator flux magnitude using Conventional DTC                                                | . 125 |
| Fig. 6.17 Stator flux magnitude using DTC with the adaptive duty ratio control                        | 125   |
| Fig. 6. 18 Stator flux vector locus using conventional DTC                                            | . 126 |
| Fig. 6. 19 Stator flux vector locus using DTC with the adaptive duty ratio fuzzy control              | 126   |
| Fig. 6. 20 Duty ratio Value                                                                           | 127   |
| Fig. 6. 21 Stator Current using Conventional DTC                                                      | . 127 |
| Fig. 6. 22 Stator Current using DTC with duty ratio fuzzy control                                     | 128   |
| Fig. 6. 23 THD in the stator current waveform using Conventional DTC                                  | 129   |
| Fig. 6. 24 THD in the stator current waveform using DTC with the adaptive duty ratio fuzzy controlled | r130  |
| Fig. 6. 25 Switching frequency using Conventional DTC                                                 | 130   |
| Fig. 6. 26 Switching frequency using DTC with The adaptive duty ratio fuzzy controller                | 131   |
| Fig. 6. 27 Electromagnetic torque using Conventional DTC                                              | 132   |
| Fig. 6. 28 Electromagnetic torque using the DTC with the adaptive duty ratio fuzzy controller         | 133   |
| Fig. 6. 29 Stator current ia                                                                          | . 133 |
| Fig. 6. 30 Stator flux magnitude                                                                      | 134   |
| Fig. 6. 31 q-axis and d-axis of the stator flux                                                       | 134   |
| Fig. 6. 32 Stator flux locus during the 1 <sup>st</sup> second                                        | 135   |

## LIST OF TABLES

| Table 3. 1 The 8 <sup>th</sup> two level voltage source inverter's outputs    | 43  |
|-------------------------------------------------------------------------------|-----|
| Table 3. 2 Basic switching look-up table                                      | 51  |
| Table 3.3. Takahashi switching look-up table                                  | 51  |
| Table 4. 1 The 27 <sup>th</sup> three level voltage source inverter's outputs | 58  |
| Table 4. 2 Basic switching look-up table                                      | 63  |
| Table 4. 3 Complete basic switching look-up table                             | 63  |
| Table 4. 4 Modified switching look-up table                                   | 68  |
| Table 4. 5 Complete modified switching look-up table                          | 68  |
| Table 5.1 Linguistic rule base for the Fuzzy logic controller                 |     |
| Table 6. 1 Switching look-up table                                            | 109 |
| Table 6. 2 Complete Modified switching look-up table                          | 110 |
| Table 6. 3 Linguistic rule base for the main fuzzy logic controller           | 116 |
| Table 6. 4 Linguistic rule base for the adaptive block fuzzy logic controller | 119 |
|                                                                               |     |

#### LIST OF SYMBOLES

 $d^e$ ,  $q^e$ Synchronously rotating reference frame direct and quadrature axis component.  $d^s$ ,  $q^s$ Stationary reference frame direct and quadrature axis component.  $V_{as}^{s}, V_{ds}^{s}$ Stator voltage  $q^s$ ,  $d^s$  axis component.  $V'_{ar}^{s}, V'_{dr}^{s}$ Rotor voltage q<sup>s</sup>,d<sup>s</sup> axis component referred to the stator side.  $V_{as}, V_{ds}$ Stator voltage q<sup>e</sup>,d<sup>e</sup> axis component referred to the stator side .  $V'_{qr}, V'_{dr}$ Rotor voltage q<sup>e</sup>,d<sup>e</sup> axis component referred to the stator side.  $\psi_{qs}{}^{s}$  , $\psi_{ds}{}^{s}$ Stator flux q<sup>s</sup>,d<sup>s</sup> axis component. Rotor flux  $q^s$ ,  $d^s$  axis component referred to the stator side .  $\psi'_{ar}^{s}, \psi'_{dr}^{s}$ Stator flux q<sup>e</sup>,d<sup>e</sup> axis component.  $\psi_{qs}, \psi_{ds}$ Rotor flux  $q^s$ ,  $d^s$  axis component referred to the stator side.  $\Psi'_{\rm ar}$ ,  $\Psi'_{\rm dr}$  $\Psi_{dm}^{s}$ ,  $\Psi_{dm}^{s}$ Magnetizing flux q<sup>s</sup>,d<sup>s</sup> axis component. Magnetizing flux q<sup>e</sup>, d<sup>e</sup> axis component.  $\psi_{qm}, \psi_{dm}$  $i_a$ ,  $i_b$ ,  $i_c$ Stator phase a, b and c currents.  $i_{as}^{s}, i_{ds}^{s}$ Stator current q<sup>s</sup>,d<sup>s</sup> axis component. Stator current q<sup>e</sup>d<sup>e</sup> axis component.  $i_{qs}$ ,  $i_{ds}$  $i'_{qr}^{s}, i'_{dr}^{s}$ Rotor current q<sup>s</sup>,d<sup>s</sup> axis component referred to the stator side. Stator current q<sup>e</sup> d<sup>e</sup> axis component referred to the stator side.  $i'_{ar}$ ,  $i'_{dr}$  $i_{am}^{s}$ ,  $i_{dm}^{s}$ Magnetizing current q<sup>s</sup>,d<sup>s</sup> axis component.  $R_s, L_s$ Stator resistance and self inductance.  $R'_r$ ,  $L'_r$ Rotor resistance and self inductance referred to the stator side

| $L_{ls}$ , $L'_{lr}$                           | Stator and rotor leakage inductance                               |
|------------------------------------------------|-------------------------------------------------------------------|
| L <sub>m</sub>                                 | Mutual (Magnetizing) inductance                                   |
| $T_m$ , $T_L$                                  | Electromagnetic and load torque                                   |
| $\omega_r$ , $\omega_m$                        | Motor electrical and mechanical speed.                            |
| ω <sub>e</sub>                                 | Synchronous speed.                                                |
| $\omega_{sl}$                                  | Slip frequency.                                                   |
| θ <sub>e</sub>                                 | Angle of Synchronously rotating reference frame.                  |
| $\Theta_{\rm r}$                               | Rotor angle.                                                      |
| $\Theta_{sl}$                                  | Slip angle.                                                       |
| $T_r$                                          | Rotor time constant.                                              |
| γ                                              | Torque angle.                                                     |
| J, B                                           | Combined rotor and load inertia and viscous friction coefficient. |
| Р                                              | Total number of poles.                                            |
| $T_{ref}$                                      | Torque reference command.                                         |
| $\psi_{ref}$                                   | Stator flux reference command.                                    |
| S <sub>a</sub> ,S <sub>b</sub> ,S <sub>c</sub> | Three level inverter switches states.                             |
| $H_{Te}, H_{\psi}$                             | Torque and Flux hysteresis comparator states                      |
| $HB_{Te}, HB_{\psi}$                           | Torque and Flux hysteresis band width.                            |
| $\delta$                                       | Duty ratio.                                                       |

## LIST OF ABBREVIATIONS

| AC    | Alternating current.                   |
|-------|----------------------------------------|
| ANFIS | Adaptive Neural Fuzzy Inference System |
| ANN   | Artificial Neural Network              |
| DC    | Direct Current                         |
| DSP   | Digital Signal Processor.              |
| DTC   | Direct torque control.                 |
| EKF   | Extended Kalman Filter.                |
| FOC   | Field oriented control.                |
| IGBT  | Insulated gate Bipolar transistor.     |
| PWM   | Pulse width modulation                 |
| THD   | Total harmonic distortion              |
| PI    | Proportional integral controller       |
| FFT   | Fast Fourier Transform                 |

# CHAPTER (1) INTRODUCTION

### 1.1. General

In the past, DC motors were used extensively in factory automation areas where variable-speed operation with high performance at low speed was required, since their flux and torque could be controlled easily by the field and armature current. However, DC motors have certain disadvantages, which are due to the existence of the commutator and the brushes. That is, they require periodic maintenance; they cannot be used in explosive or corrosive environments and they have limited commutator capability under high speed operation [1]. These inherent disadvantages of DC motors have prompted continual attempts to find better solutions to the problem. An attempt has been made to use alternating-current motors instead of DC motors, which can have simple and rugged structural, high maintainability and economy; they are also robust and immune to heavy overloading. Their small dimensions, compared with DC motors, allows AC motor to be designed with substantially higher output ratings for low weight and low rotating mass [2-3].

Today, using modern high switching frequency power converters controlled by microcontrollers, frequency, phase and magnitude of the input to an AC motor can be changed and hence the motor's speed and torque can be controlled. AC motors combined with their drives have replaced DC motors in industrial applications due to their lower cost, better reliability, lower weight, and reduced maintenance requirement. Among the various AC drives systems, those which contain the squirrel cage induction motor have a particular cost advantage. The squirrel cage induction motor is simple, easy to build, rugged and is one of the cheapest machines available at all power ratings [2]. Variable speed or adjustable torque control of electrical motors drives are crucial component in modern industrial manufacturing processes. The application fields of flux and torque decoupling control of induction machines like field oriented control (FOC) [2&4] and more recently direct torque control DTC [5-6] have greatly increased in the areas of traction, paper, rolling mills, machine tools and steel industries where the high performance of the AC motor is required. FOC is based on the decomposition of the instantaneous stator current into two orthogonal components in the synchronously rotating reference frame. The two current components are controlled by a PI controller. Therefore, the dynamic response is relatively low and very sensitive to the motor parameters variation [2]. In the middle of 1980, a simplified variation of FOC known as direct torque control (DTC) for induction machine was developed by Takahashi and Depenbrok. In direct torque controlled induction motors drives, it is possible to control directly the stator flux linkage and the electromagnetic torque in a closed loop by the selection an optimum voltage vector through a predesigned inverter gate pulses look-up table to be applied to the machine stator terminals. The selection of the optimum voltage vector and hence the inverter switches status is made to restrict the flux and the torque errors within their respective hysteresis bands. Moreover, to obtain the fastest torque response and highest efficiency at every instant without using any internal current loops to overcome the drawbacks of FOC. The torque and flux are controlled in closed loop using flux and torque hysteresis comparators without using any internal current loops to overcome the drawbacks of FOC. DTC is simpler than field oriented control and less sensitive to the motor parameters variation, since the stator resistance value is the only machine parameter used to estimate the stator flux [5].

Nowadays, much research is still being done to improve the conventional DTC main disadvantages. The first and main disadvantage of DTC is the high torque and flux ripples [7]. The use of multilevel inverter instead of the conventional two level inverter