Impact of Donor and Recipient Sex on Outcomes of HLA-Identical Sibling Allogeneic Hematopoietic Stem Cell Transplantation

Thesis submitted to faculty of medicine, Ain Shams University for partial fulfilment of master degree in Haematology

By

Mohamed Ahmed Hassan M. BB. Ch.

Under supervision of

Prof. Dr. Maha Mohamed Tawfik El-Zimaty

Professor of Hematology, Faculty of medicine, Ain Shams university

Dr. HanyMohamedAbd-allahHegab

Assistant Professor Of Hematology, Faculty of medicine, Ain Shams university

Dr. Mohamed HamdyAttia

Lecturer of hematology, Faculty of medicine, Ain Shams university

Faculty of Medicine

Ain Shams University

2014

Introduction

Hematopoietic cell transplantation (HCT) is well established as therapy for hematologic malignancies as well as many non-malignant disorders. Over the last several years, the spectrum of diseases thatmay be treated with HCT has dramatically expanded, increasing the importance of this therapeutic modality and extending HCT beyond the traditional bounds of hematology and oncology[*Grouch et al.,2006*].

HCT is founded on the principle that hematopoietic stem cells (HSCs) infused, will home to and engraft in the stem cell niche within the bone marrow microenvironment, and will then proliferate and differentiate to repopulate all lineages of the blood[*Gratwohl et al.*, 2002].

Donor selection is an importantway to decrease the risks after HSCS and is therefore akey component of the clinical practice of transplantation[*Remberger et al.,2002*].

In general, HLA-identical siblings are thepreferred donors, but some patients have more thanone HLA-matched sibling. Thus, it is important tounderstand the contribution of donor factors otherthan HLA matching to outcomes after SCT[*Kollmanet al.,2001*].

There are many criteriaproved or hypothesized to affect outcomes after SCT and one of these, sexis the most controversial[James et al.,2003].

Some investigatorshave found an increased risk of acute orchronic graft-versus-host disease (GVHD) associated with donor sexalthough it is uncertainwhether this risk applies just to male recipients or toall patients[*Randolph et al.,2004*].

Transplantation of stem cells from a female donor to a male recipient is a special circumstance in which donor T cells specificfor minor H antigens, encoded by genes on the recipientY-chromosomethat are polymorphic to their X-chromosome homologues, may make a contribution to GVHD and GVL activity[*Randolph et al.,2004*].

The role of previous pregnancies in recipients of allogeneic SCT has never been evaluated, although this also has the potential to influence outcomes and may interact with donor parity [Alison et al., 2006].

Aim of the work

Investigate the effect of donor and recipient sex mis match on outcomes of HLA-identical sibling allogeneic stem cell transplantation.

Acknowledgement

This thesis would not have been possible without the support of many people. I wish to express my gratitude to my supervisors, **Prof**. **Dr. Maha El-Zimaty** who was abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude are also due to the members of the supervisory committee, **Assoc. Dr .HanyHegaband Dr**. **Mohamed Hamdy** without whose knowledge and assistance these papers would not have been successful.

Special thanks also to **Prof. Dr. Mohammed Khalaf** and **Prof Dr. MostafaGamal** who learnt me the art of life, and gave me the power and energy to work and read.

I'd also like to convey thanks to my family and colleagues for their support and contineuos encouragement.

I also wish to express my love and gratitude to my beloved fiancee; for her understanding & endless love, through the duration of my studies.

List of contents

Item		Page	
List of Abbreviations		i	
List of figures			iii
List of Tables		iv	
<u>Intr</u>	Introduction		1
<u>Cha</u>	Chapter one: Hematopoietic Stem Cell		
<u>Tra</u>	insp	<u>plantation</u>	
	Hi	story of Hematopoietic Stem Cell	4
	Tr	ansplantation:	
	In	dications for HSCT	8
	Bi	ology essentials of stem cell transplantation	9
		Celular components of the transplant	9
		Hematopoietic stem cell sources	11
		The preparative regimen	12
		Treatment to control malignant disease	13
	Hematopoietic stem cell homing, engraftment		14
	an	d reconstitution of hematopoiesis	
	Re	econstitution of immunity	15
		Recovery of innate immunity	16
		Recovery of adaptive immunity	16
	Tł	ne basis of alloimmune reactions	17
		The adaptive immune response	19
		The innate immune response	19
Che	apte	er two: GRAFT-VERSUS-HOST DISEASE	
<u>(</u> <i>G</i>)	VHI	<u>D)</u>	21
		Definition	24
		Clinical spectrum	24
		IBMTR and GLUCKSBERG scoring	26
		system	
		Etiology	32
		Pathology	33
		Immunopathophysiology	36
		Graft-host tolerance	44

List of contents

	Risk factors for GVHD	46
	GVHD / prophylaxis	47
<u>Cha</u>	Chapter three: Organ – specific complications in	
relation to HSCTS		55
	Liver disorders in relation to HSCTS	
	Kidney disease following hematopoietic	69
	cell transplantation	
	Pulmonary complications	85
	Cardiac complications	94
	Neurologic complications	97
	Endocrine complications	106
Materials & Methods		110
Results		112
Disscusion		120
Conclusion		126
Summary		127
References		128

List of Abbreviation

ALL	Acute lymphoblastic leukemia
AML	Acute myeloid leukemia
APC	Antigen-presenting cells
ATG	Antilymphocyte globulin
BM	Bone marrow
BMT	Bone marrow transplants
BU	Busulfan
CFU	Colony forming unit
CI	Confidence interval
CIBMTR	Center for International Blood and Marrow
CIDIVITK	Transplant Research
CLL	Chronic lymphocytic leukemia
CML	Chronic myeloid leukemia
CMV	Cytomegalovirus
COBLT	Cord blood transplantation
CSP	Cyclosporin
CT	Computerized tomography
CY	Cyclophosphamide
DMSO	Dimethyl sulfoxide
EBV	Epstein–Barr virus
G-CSF	Granulocyte colony-stimulating factor
GM-CSF	Granulocyte-macrophage colony-stimulating
UM-CSF	factor
GvHD	Graft-versus-host disease
GVL	Graft-versus-leukemia
GVM	Graft-versus-Malignancy
HCT	Hematopoietic cell transplantation
HFD	Haplo-identical family donors
HLA	Human leucocyte antigen
HSC	Hematopoietic stem cells
HSCT	Hematopoietic stem cell transplantation
HSV	Herpes simplex virus
HTLV	Human T-lymphotropic virus
IBMTR	International Bone Marrow Transplant Registry
IPA	Invasive pulmonary aspergillosis
KIR	Killer immunoglobulin-like receptors
MDS	Myelodysplastic syndrome

List of abbreviations

mUAa	Minor histocompatibility antigon
mHAg	Minor histocompatibility antigen
MHCI	Major histocompatabilty complex class I
MHCII	Major histocompatabilty complex class II
MMF	Mycophenolatemofetil
MSC	Mesenchymal stromal cells
MTX	Methotrexate
NIMA	Noninherited maternal antigen
NK	Natural killer
NRM	Nonrelapse mortality
PBSC	Peripheral blood stem cells
PCR	Polymerase chain reaction
PTLD	Post-transplant lymphoproliferative disorder
RIC	Reduced-intensity conditioning
RR	Relative risk
RSV	Respiratory syncitial virus
SDF1	Stromal-derived factor 1
TBI	Total body irradiation
TCD	T-cell depletion
TNC	Total nucleated cell
TRM	Transplant related mortality
UCB	Umbilical cord blood
URD	Unrelated volunteer donors
VOD	Veno-occlusive disease
VZV	Varicella Zoster virus

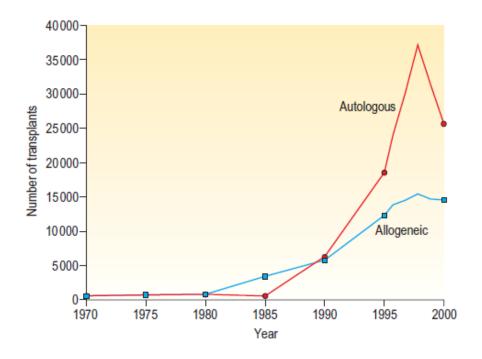
List of Figures

Eiguros	Dago
Figures	Page -
Figure 1: Annual numbers of blood and marrow transplants worldwide, 1970–2000, from the CIBMTR	5
Figure 2: Some developmental steps in blood and marrow stem cell transplantation	6
Figure 3: Cellular content of the stem cell transplant	10
Figure 4: Agents used in preparative regimens sorted by their relative ability to immunosuppress or myelosuppress	13
Figure 5: Steps in stem cell engraftment	14
Figure 6: Immune recovery after stem cell transplantation	17
Figure7 : number of class I and class II polymorphisms identified	23
Figure8 : Predicted NRM by day 200 as a function of current aGVHDAI scores at different points in time after transplantation.	28
Figure 9 :lichenoid Lesions of Chronic Graft- versus-Host Disease.	31
Figure 10 : chronic Graft-versus-Host Disease of the Skin	31
Figure 11: GVHD IN THE GIT.	33
Figure 12 : CUTANOUS-GVHD.	34
Figure 13 : PULMONARY GVHD.	35
Figure 14 : ORAL GVHD.	35
Figure15: Immunopathophysiology of acute GVHD.	37
Figure16: Oro-pharyngeal mucositis possible mechanisms.	86

Figur 17: Cyclosporine toxicity.	101
Figure 18: MRI-Cerebral aspergillosis.	103
Figure 19. Cumulative incidence of acute GVHD by donor/ patient sex.	114
Figure 20. Cumulative incidence of chronic GVHD by donor/ patient sex.	115
Figure 21 : Change in PLT in two groups.	117
Figure 22 : Change in TLC in two groups.	118

List of Tables

Graph	Page
Table 1: NK cells and T cells	18
Table 2: IBMTR and Glucksberg scoring system	26
for clinical manifestation of aGVHD.	
Table 3 : Procedures associated with a high risk of	32
GVHD.	
Table 4 : T-cells and APCs interaction.	39
Table 5: GVHD / Prophylaxis	47
Table 6: Agents used for prevention and	47
treatment of GVHD.	
Table 7: Clinical spectrum of renal and electrolyte	71
disturbances associated with cyclosporine toxicity	
Table 8: criteria of diagnosis of TMA.	81
Table 9. Patient and donor characteristics.	112
Table 10 : Donor and patient's sex in two groups.	113
Table 12: Cumulative incidence of acute GVHD.	114
Table13:Cumulative incidence of chronic GVHD.	115
Table 14 . Effect of donor/recipient sex on death.	116
Table 15 : Change in Hb in two groups.	116
Table 16 : Change in Hb in two groups.	117
Table 17: Change in TLC in two groups.	118
Table 18 :Change in SGPT in two groups.	119
Table 19 :Change in Creat. in two groups.	119


Hematopoietic Stem Cell Transplantation

History of Hematopoietic Stem Cell Transplantation:

Hematopoietic stem cell transplantation HSCT is considered the corner stone in the treatment of haematological, and some non haematological malignancies beside some other non-malignant disorders, being a curative option of treatment *[Kyoo-Hyung et al, 2009]*.

Every year, many hundreds of patients receive an autologous or allogeneic transplant procedure, and the numbers have increased vastly since the pool of allogeneic donors available worldwide widened, enabling a larger number of patients with no sibling donor to undergo an allogeneic transplant prodedure. Figure 1 shows the annual number of transplants reported in the International Bone Marrow Transplant Registry and how this increased as stem cell transplantation became a realistic treatment possibility. However, stem cell transplants have only become a therapeutic possibility since the late 1960s. Prior to this, understanding of such topics as human leukocyte antigen matching was rudimentary. The concepts of immunosuppression and graft-versus-host disease were entirely unexplored and little was known about preparative therapies. Early transplants thus invariably met with awoeful lack of success due to problems from regimen-related toxicity, graft-versus-host disease and lack of availability of support measures, including antibiotics and blood products.

As knowledge about these fundamental topics was acquired and methods of identifying a suitable donor improved along with support measures and knowledge about immunosuppression, so did the results of cell transplantation. Since the 1970s, steady progress has been made and stem cell transplantation is now regarded as a routine, rather than an experimental, approach in the treatment of a number of conditions which would have proven fatal earlier on. It is now possible to identify the risk factors which will predict a good or poor outcome in a particular clinical setting, thereby facilitating the decision of whether or not to proceed with the transplant. However, the problems which beset the early transplanters, in particular disease relapse, graft-versus-host disease and overwhelming infection, are still the major causes of treatment failure inspite of the improvements which have been made to support therapies and the immense amount of information now available regarding the cellular and humoral aspects of transplantation and our consequent ability to manipulate and control the microenvironment in the transplant setting. Figure 2 depicts some of the milestones in the evolution of stem cell transplantation and therapeutic interventions which have become available in the context of the diseases for which transplantation was attempted early on [TáinBóCúailnge, 1967].

Figure1: Annual numbers of blood and marrow transplants worldwide, 1970–2000, from the CIBMTR[*Treleaven& Barrett, 2009*].

As early as 1956, the idea that allogeneic bone marrow transplants (BMT) might exert a therapeutic immunologic effect against malignancies was proposed by Barnes &Loutit, who observed an antileukemia effect of transplanted spleen cells in experimental murine models. They also observed that animals who had been given allogeneic rather than syngeneic marrow cells died of a 'wasting disease' which would now be recognized as being graft-versus-host disease (GvHD) [Barnes et al., 1962].

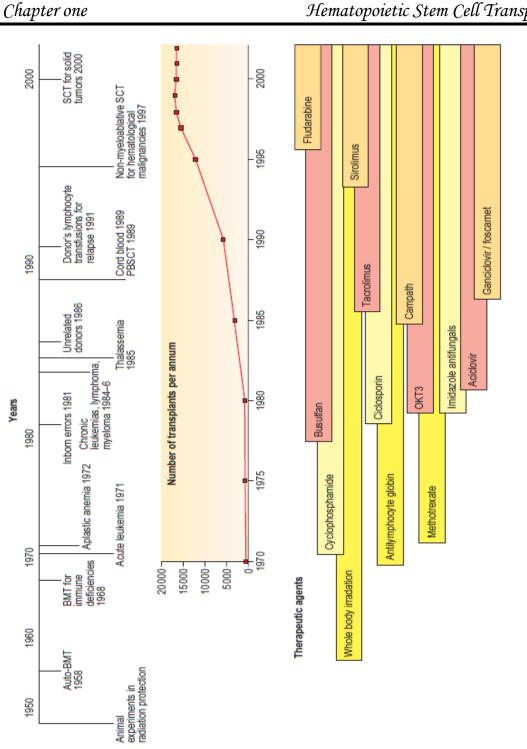


Figure 2: Some developmental steps in blood and marrow stem cell transplantation and the introduction of significant therapeutic agents, 1950-2000[Treleaven& Barrett, 2009].