OMENTIN-\ IN CHILDHOOD DIABETES

Thesis
Submitted for Partial Fulfillment
of Master Degree in Pediatrics

By **Shimaa Mohammed El Hosiny**

M.B.B. Ch Faculty of Medicine Ain Shams University

Under supervision of

Dr. Mohammed Abo El Asrar Mohamed El-Byomy

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Abeer Abd EL-Maksoud

Assistant Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Wasem El-Sayed Saad

Lecturer of Clinical Patholgoy Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University

اومنتين ١ في مرض البول السكري عند الأطفال

رسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيبة / شيماء محمد الحسيني بكالوريوس الطب والجراحة كلية الطب - جامعة عين شمس ٢٠٠٥

تحت اشراف د / محمد أبو الأسرار محمد البيومي عفيفي أستاذ طب الأطفال كلية الطب - جامعة عين شمس

> د / عبير عبد المقصود أستاذ مساعد طب الأطفال كلية الطب - جامعة عين شمس

د / وسام السيد سعد مدرس الباثولوجيا الاكلينيكية والكيميائية كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٢

All braise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to Dr. Mohammed Abo El Asrar Mohamed El-Byomy, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his continuous encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to Dr. Abeer Abd EL-Maksoud, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University who freely gave her time, effort and experience along with continuous guidance and encouragement throughout this work.

I am also grateful to Dr. Wasem El-Sayed Saad, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, Whose help and support are greatly appreciated.

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the Work	٣٣
Review of Literature	
Diabetes Mellitus	ξ
Diabetes Mellitus type \	V
Type Y Diabetes	٣٩
Omentin	٥١
Patients and methods	ογ
Results	
Discussion	Yo
Summary	λ٣
References	ΑΥ
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page
Table (<i>†</i>):	Etiologic classification of diabetes mellitus	٥
Table (<i>f</i>):	Criteria for the diagnosis of diabetes	А
Table (*):	The relation between HLA-DR allele and the ri of developing diabetes	
Table (<i>t</i>):	Screening guidelines for complications diabetes mellitus.	
Table (*):	Hypoglycemic symptoms	
Table ([†]):	Diagnostic Criteria for Diabetic Ketoacidosis at Hyperosmolar Hyperglycemic State:	
Table (Y):	Comparison of human insulin's and insulant analogues.	
Table (<i>A</i>):	Descriptive statistics for clinical data	
Table (4):	Descriptive statistics of laboratory data	
Table (<i>'</i> ·):	Comparison between group A and control group as regard clinical and laboratory data	•
Table (1 1):	Comparison between group B and control group as regard clinical and laboratory data	•
Table (1 ''):	Comparison between group B and control group as regard clinical and laboratory data	•
Table (<i>† †</i>):	Comparison between studied groups as regardlessma omentin	

LIST OF TABLES (Con...)

Table No.	Title	Page
Table († £):	Correlation between serum levels of oments other studied parameters in diabetic (groups A and B)	cases
Table (1 0):	Correlation between serum levels of oments other studied parameters in control group	
Table († 7):	Different cutoff values of plasma omendiagnosis of diabetes	
Table (1 1/):	Comparison between obese and non obese in group A	
Table († A):	Comparison between obese and non obese in group B	
Table (1 4):	Comparison between obese and non obese in group C (control group)	

LIST OF FIGURES

Page	Title	Figure No.
Figure (1):	Diagram of Possible mechanism for developing type \(\) diabetes.	
Figure (۲):	The pathogenesis of islet cell destruction. Is proteins are presented by antigen presenting (APCs) to native Thought type CD ^{£+} T coassociation with MHC class II molecules.	ng cells ells in
Figure (*):	Hypothetical stages and loss of beta cells individual progressing to type 'A diabetes Eisenbarth, NEJM, '٩٨٦	. From
Figure (٤):	Comparison between group A and control gregard HA\c and plasma omentin	_
Figure (*):	Comparison between group B and control gregard clinical and laboratory data	•
Figure (٦):	Comparison between studied groups as plasma omentin	
Figure (V):	Correlation between plasma omentin and I diabetic groups.	
Figure (^):	Correlation between plasma omentin and H diabetic groups.	
Figure (٩): D	Oifferent cutoff values of plasma omentin in di of diabetes	
Figure (۱۰):	Comparison between obese and non obese c	

Figure (۱۱):	Comparison between obese and non obese cases in	
	group B	۷۳
Figure (۱۲):	Comparison between obese and non obese cases in	
	group C (control group)	. Y £

LIST OF ABBREVIATIONS

Abbrev.	Full term
ACE	Angiotensin converting enzyme
APCs	Antigen presenting cell
BMI	Body mass index
CSII	Continuous subcutaneous insulin infusion
DCCT	Diabetes control and complication trial
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
DpT-1	The diabetes prevention trial \
GAD	Glutamic acid decarboxylase autoantibodies (% K isoform)
GFR	Glomerular filtration rate
HAIc	Glycated hemoglobin
hEs	Human embryonic stem
HHS	Hyperglycemic hyperosmolar state
HOMA	The hemostatic model assessment
HWF	Hepatocyte nuclear factor
IAT	ICA on tyrosine phsophatase autoantibodies
IAA	In autoantibodies
ICA	Islet cell autoantibodies
IDDM	Insulin dependent diabetes mellitus
IL	Interleukin
IR	Insulin resistance
LDL	Low density lipoprotein
MODY	Maturity onset diabetes of the young

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Full term
NGSP	National Glycohemoglobin Standardization program
NKT	Natural killer T cells
NNTR	Variable number of tandem repeats
OGTT	Oral glucose tolerance test
PCOS	Polycystic ovary syndrome
PDR	Proliferative diabetic retinopathy
TIDM	Type I diabetes mellitus

INTRODUCTION

The M diabetes is considered as an autoimmune disease which is developed due to T-cell-mediated destruction of β cells in the islets of Langerhans of the pancreas. In children with active β -cell destruction auto antibodies against β -cell structures appear in the circulation. In The DM the cause for β -cell destruction is not known. The most common form of diabetes in children worldwide, and approximately β - β of the children with diabetes have The M. In addition, there are several rare forms of diabetes diagnosed in the early childhood or in late youth (*Harjutsalo et al.*, β - β - β).

Type \(^\) diabetes mellitus is a heterogeneous syndrome characterized by insulin resistance and/or defective insulin secretion (*Gerich*, \(^\)1\(^\)1\(^\)1). The mechanisms underlying insulin résistance are not yet fully clarified. The body mass index (BMI) and serum triglycerides are the most important factors responsible for the evolution of insulin resistance in type \(^\) diabetic patients (*Taniguchi et al.*, \(^\)7\(^\cdots\cdots\)).

Adipose tissue is now recognized as an endocrine organ that secretes peptides known as adipokines. Adipokines may

١

function as modulators of metabolism, such as leptin, adiponectin, resistin, apelin and omentin, or as modulators of inflammation, such as TNF α , interleukin- 7 , adipsin, acetylation-stimulating protein, plasminogen-activator inhibitor type (*Eldor et al.*, $^{7} \cdot \cdot ^{7}$).

The levels of circulating omentin-\ are decreased in obesity, and they correlate with several markers of the metabolic syndrome, positively with adiponectin and high-density lipoprotein (HDL) levels and negatively with body mass index (BMI), waist circumference, insulin resistance and leptin level (*de Souza et al.* \(\(\tau \cdot \cdot \).

AIM OF THE WORK

To asses plasma omentin level in obese children and adolescents with type 'diabetes mellitus and type 'diabetes mellitus as well as none obese children and adolescents with type 'diabetes mellitus and type 'diabetes mellitus in relation to matched age and sex healthy control subjects.

DIABETES MELLITUS

Definition:

Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both.

The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction and failure of different organs especially the eyes, kidneys, nerves, heart and blood vessels (American Diabetes Association, 7 · 1 ·).

Several pathogenic processes are involved in the development of diabetes. These range from autoimmune destruction of the β cells of the pancreas with consequent insulin deficiency to abnormalities that result in resistance to insulin action. The basis of the abnormalities in carbohydrate, fat, and protein metabolism in diabetes is deficient action of insulin on target tissues. Deficient insulin action results from inadequate insulin secretion and/or diminished tissue responses to insulin at one or more points in the complex pathways of hormone action (*American Diabetes Association*, $7 \cdot 1 \cdot 1$).

Impairment of insulin secretion and defects in insulin action frequently coexist in the same patient, and it is often unclear which abnormality, if either alone, is the primary cause of the hyperglycemia (American Diabetes Association, ** 1 *).