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Abstract

Sally Sameh Abd El Ghaffar Attia

Knowledge Discovery in Intelligent Tutoring Systems
M aster of Science dissertation

Ain Shams University, 2004

Knowledge discovery through data mining ams a searching for
meeningful  information like patens and rules in lage volumes
of daa Our objective is to discover usful knowledge in
Intelligent Tutoring Systems (ITS). These ae tutoring systems
which offer the ability to respond to individudized dudent needs
A mgor chdlenge for today's schools is to creste individudized
indruction in inexpensve, expandable ways. To achieve this god,
educationd sysems must adgpt to each Sudent by mining Student
data to determine what a student knows and does not know.

An experiment was conducted over a tutoria for binary relaions
Students answers to questions a the end of the lesson were
collected. Data mining usng Rough Sas technique was
implemented to extract important rules from the daa (Students
answers) and hence the student can be directed to which parts of
the lesson he should teke again, thus hedping to adopt the tutoring
sysdems to each dudent individud needs and hence the tutoring
sydems ae cdled intdligent. Usng this knowledge, teaching
Systems can guide studentsin the learning process.

In this research, three different agpproaches of Rough Sets are
goplied to detect the decison rules These gpproaches provide a
powerful  foundation to discover important dructures  in data
Thee agpproaches ae unique in the sense tha they only use the
infformation given by the daa and do not rdy on othe modd
assumptions. We found that, rough sets can be used to undergtand



large ss of dudent daa, pinpointing problem aess for student
learning.

The rexults obtaned wee in the form of decison rules that
showed what concepts the dudent understood and which he did
not undersand depending on which questions he answered correct
and which questions he answered wrong. Also some questions of
the quizzes were found to be usdess It was concluded that data
mining was able to extract some important patterns and rules from
the gSudents answers which were hidden before and which ae
helpful to both the students and the experts

In condudon, this research has provided an in-depth andyds of
the use of rough sets goproaches as a mining tool in computer-
based tutorids The gpplication of rough s#s mehods in
diagnosng dudent misconceptions mekes a  contribution  to  the
fidds of compute-based education, fault-tolerant teaching, and
datamining.

Keywords:

Knowledge Discovery; Daa  Mining; Inteligent Tutoring
Systems; Rough Sets, Fault Tolerant T eaching.
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1 Introduction

As the world becomes more interconnected, information can be
shared between people as never before. While this opens up exdting
possbiliies for communication and research, it dso rests in an
ovewheming amount of information that each person must process
evay day in order to function. With each new person joining the
globd Vvillage, the need to devdop automated methods to filter, sort,
seach, ad dhae informaion in meaningful  ways  grows
exponentidly. Therefore, there is a big need for daa mining in

sodiety today.

Data mining is a st of methods used as a dep in the Knowledge
Discovery  (KD)  process to  didinguish  previoudy  unknown
relationships, rules and peterns within large volumes of data One of
data mining tasks is desription i.e. to describe databases in terms of
patterns which human can understand and make use of [1].

Our schools are facing an even greater need for the benefits that data
mining promises to ddiver. Both teeches and dSudents ae faced
with teeching and learning an eve-growing number of idess dl in
the same school day as before. Idedly, as more issues are addressed,
schools would add more teechers and classes to cover new topics
Ingead, schools face teacher <horteges, inadequate tescher training,
and growing classroom sizes.

At the same time, the typicd trend in universties is changing from
young oncampus dudents to diverse professonds of dl ages taking
clases in the evenings, online or even a a digance. Colleges and
universties ae now chdlenged to ddiver qudity service to dudents
of widdy ranging abilities and backgrounds across dl digances. To
rie to this chdlenge information technology asssed education
must par individuds with expet indruction that is interactive,



adeptive, and accessble The promise  of  information  technology
assded educetion is grest, but research into methods for the ddivery
of education with informaion technology is dill a rich, open fidd

[2].

In our research, we ae trying to mine daabases resulting from
Intelligent  Tutoring Sysems (ITS. Thee ae Computer-based
tutoring sysems which achieve ther intdligence by representing
pedagogicd decisons aout how to teech a wdl a information
about the learner. This dlows for greater versdtility by dteing the
gygem’'s interactions with dudents. Intdligent tutoring sysems have
been shown to be highly effective a increesng dudent's moativation
and performance [3].

We ae trying to invedigae if the rdaivey new aea of research,
teemed data mining and knowledge discovery, can be goplied to
educationd  problems to achieve our god of individudized
indruction, a hopefully much lower cods than traditiond adaptive
teeching sysems that use knowledge-based modds to understand
and direct sudent learning.

Many excdlent intdligent tutoring sysems exis today. However,
the mgoity of thee intdligent tutoring sydems require  the
condruction of complex modds tha ae goplicdble only to a specific
tutorid in a specfic fidd, necesstaing a large number of experts to
creste and then test these modeds on dudents. Daa mining and
knowledge discovery, on the other hand, might be goplied to the
problem of undedanding dudent knowledge and usng  this
understanding to direct knowledge remediation.

The god of daa mining in ITS is to automaticaly assess dudent
knowledge of the concepts undelying a tutorid topic, and use this



