Lipoprotein Abnormalities Accompanying Diabetic Nephropathy

A Thesis Submitted in Partial Fulfillment of Master Degree in Internal Medicine

> By Physician: Pierre Samir Mosaad MB; BCh.

Under Supervision of **Prof. Dr. Hala Ali Gamal El Din** Professor of Internal Medicine

Faculty of Medicine - Cairo University

Prof. Dr. Ossama Khalaf Allah

Professor of Clinical Pathology Faculty of Medicine Cairo University

Prof. Dr. Hala El Mofty

Professor of Ophthalmology Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2010

ABSTRACT

• **Background:**

There is now much evidence that dyslipidemia can favor progression of renal damage in both **diabetic and nondiabetic diseases.** Out of all tested lipid parameters **only plasma apo B concentration remained significant as a predictive factor of progressive renal failure**.

• **Objectives:**

To prove that apolipoprotein B -100 can be used as an early detected risk factor to assess diabetic nephropathy and retinopathy.

• <u>Methods:</u>

We randomly selected 56 patients of both Type 1 and Type 2 diabetes mellitus. We proved that they have diabetic nephropathy through elevated albumin to creatinine ratio. Fundus examination and flourescein angiography were done to detect retinopathy grade.

• <u>Conclusion</u>

Apolipoprotein B levels usually increase with the rise of degrees of nephropathy and retinopathy.

• Keywords:

Apolipoprotien B, Diabetic nephropathy, Diabetic retinopathy.

Chapter	Subject	Page
	ACKNOWLEDGMENT	1
	LIST OF TABLES	2
	LIST OF FIGURES	3
	LIST OF ABBREVIATIONS	4
Ι	INTRODUCTION AND AIM OF	6
	WORK	
II	REVIEW OF LITERATURE	
	II-1 Diabetes Mellitus	8
	II-2 Diabetic retinopathy	15
	II-3 Diabetic nephropathy	26
	II-4 Lipoproteins	44
	II-5 Lipoprotein abnormalities with	57
	diabetic nephropathy	
III	MATERIALS AND METHODS	65
IV	STATISTICS	68
V	RESULTS	69
VI	DISCUSSION	87
VII	CONCLUSION & RECOMMENDATION	ONS
	VII-1 Conclusion	98
	VII-2 Recommendations	99
VIII	ENGLISH SUMMARY	100
IX	REFERENCES	105
X	ARABIC SUMMARY	

To my mother and my father

I am very thankful to **Prof. Dr. Hala Ali Gamal El Din**, Professor of Internal Medicine, Faculty of Medicine, Cairo University, for her continuous guidance and support throughout two years till this research was completed.

I am very thankful to **Prof. Dr. Hala El Mofty**, Professor of Ophthalmology, Faculty of Medicine, Cairo University, for her sincere effort and help.

I am very thankful to **Prof. Dr. Ossama Khalaf Allah**, Professor of Clinical Pathology, Faculty of Medicine, Cairo University, for his help and support in fulfilling this research.

A special thank to **Prof. Dr. Mary Nabil Rizk**, Assistant professor of Internal Medicine, Faculty of Medicine, Cairo University, for her kind care and support in revising the thesis and her valuable notes.

I present a special thank to **Prof. Dr. Mohammed Hassan**, Professor of Public health and Community Medicine, Faculty of Medicine, Cairo University, for his appreciated statistical work and his valuable consultation.

A special thank to **Dr. Mohammed Amr**, Lecturer of Ophthalmology, Faculty of Medicine, Cairo University, for his sincere effort.

I thank **Dr. Mohammed Yehia Alyamany** for his effort in preparing and presenting the statistical work of this thesis.

Table	Title	Page
Table 1	Etiological classification of diabetes mellitus	10
Table 2	Criteria for the diagnosis of diabetes	11
Table 3	Grading of diabetic retinopathy	21
Table 4	American Diabetes Association recommendations for glycemic control	22
Table 5	Diabetic nephropathy stages: cutoff values of urine albumin for diagnosis and main clinical characteristics	27
Table 6	Indications for renal biopsy in albuminuric patients with type 2 diabetes	37
Table 7	Prevention of the onset of diabetic nephropathy	39
Table 8	Strategies and goals for reno- and cardioprotection in patients with diabetic nephropathy	40
Table 9	Summary of the major drugs used for the treatment of hyperlipidemia	56
Table 10	Collective table showing parameters monitored and studied in the thesis	69
Table 11	Descriptive statistics showing parameters after grouping according to stage of nephropathy	70
Table 12	Comparison between study parameters in different groups of nephropathy	71
Table 13	Apo B levels in groups of patients having single or combined microvascular complications	76
Table 14	Association between retinopathy and nephropathy	77
Table 15	Degrees of nephropathy compared to degrees of retinopathy	78
Table 16	Degrees of nephropathy compared to degrees of retinopathy with macular changes	78
Table 17	Correlation between serum creatinine level and urinary albumin to other parameters	79
Table 18	Correlation of eGFR to other parameters	80
Table 19	Apo B levels compared to duration of diabetes	81
Table 20	Relation of duration of diabetes to other parameters	81
Table 21	Apo B levels compared to retinopathy grading and maculopathy	81

LIST OF FIGUERS

Figure	Title	Page
Fig. 1	Mechanism of insulin secretion by beta cells	9
Fig. 2	Mechanism of insulin action on peripheral cells	9
Fig. 3	Time course for development of diabetic nephropathy	28
Fig. 4	Schematic illustration of the potential interactions between metabolic, hemodynamic, and intracellular factors and growth factors/cytokines in the pathophysiology of diabetic kidney disease	34
Fig. 5	Kimmilstiel – Wilson nodule	35
Fig. 6	Electron microscopic picture showing the thickening of the basement membrane	35
Fig. 7	Lipoprotein classification according to size and density	45
Fig. 8	Exogenous and endogenous pathways for lipid transport	47
Fig. 9	HDL metabolism and reverse cholesterol transport	49
Fig. 10	Composition of LDL particle	53
Fig. 11	Mechanisms by which atherogenic dyslipidemia causes renal pathophysiological changes	63
Fig 12	Apo B in different stages of nephropathy	73
Fig 13	Albumin in urine in different stages of nephropathy	73
Fig 14	Albumin to creatinine ratio in different stages of nephropathy	73
Fig 15	Serum creatinine in different stages of nephropathy	74
Fig16	Age in different stages of nephropathy	74
Fig 17	Estimated GFR in different stages of nephropathy	74
Fig 18	Apo B mean levels in various subgroups of patients with microvascular complications	76
Fig 19	Correlation of apo B with retinopathy	83
Fig 20	Correlation of apo B with duration of diabetes	83
Fig 21	Correlation of e GFR with apo B	84
Fig 22	Correlation of e GFR with albumin to creatinine ratio	84
Fig 23	Correlation of e GFR with albumin	85

A/C	Albumin /Creatinine ratio
ACE	Angiotensin-converting enzyme
ACEi	Angiotensin-converting enzyme inhibitor
AER	Albumin excretion rate
AGE	Advanced glycation endproduct
Apo B	Apolipoprotein B
AR	Aldose reductase
ARB	Angiotensin receptor blocker
AT ₁	Angiotensin II type 1 receptor
CKD	Chronic kidney disease
Cr	Creatinine
CSME	Clinical significant macular oedema
CVD	Cardiovascular disease
CHF	Congestive heart failure
CABG	Coronary artery bypass graft
DCCT DD	Diabetes Control and Complications Trial Disc diameter
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Diabetic macular edema
DNIL	Diabetic retinopathy
E GFR	Estimated glomerular filtration rate
ER	Endoplasmic reticulum
ETDRS	Early Treatment Diabetic Retinopathy Study
GFR	Glomerular filtration rate
IRMAs	Intraretinal microvascular abnormalities
LDL	Low density lipoproteins
MDRD	Modification of Diet in Renal Disease
MI	Myocardial infarction
NO	Nitric oxide
NPDR	Non-proliferative diabetic retinopathy
NSC	National Screening Committee
NVD	New vessel at disc
NVE	New vessels elsewhere
PDGF	Platelet-derived growth factor

LIST OF ABBREVIATIONS

PDR	Proliferative diabetic retinopathy
РКС	Protein kinase C
PTCA	Percutaneus transluminal coronary angiography
RAS	Renin-angiotensin system
ROS	Reactive oxygen species
UAE	Urinary albumin excretion
UKPDS	United Kingdom Prospective Diabetes Study
UTI	Urinary tract infection
VA	Visual acuity
VLDL	Very low density lipoproteins
VEGF	Vascular endothelial growth factor
WESDR	Wisconsin Epidemiologic Study of Diabetic Retinopathy

INTRODUCTION

There is now evidence that dyslipidaemia can favor progression of renal damage in both diabetic and nondiabetic diseases.

Microalbuminuria is often found in association with hyperlipidemia, especially in patients with diabetes and hypertention.

Urinary protein loss may increase serum lipoprotein levels. Alternatively, hyperlipidemia may contribute to the progression of chronic kidney disease by a mechanism similar to atherogenesis.

The cornerstone of our study was **apolipoprotein B -100**. It is found in VLDL, IDL or LDL and synthesized by the human liver.

Apolipoprotein B (apo B) is the structural protein of all proatherogenic lipoproteins, so it could provide the best estimate of the total number of atherogenic particles. Some studies showed that plasma apo B concentration is a significant predictive factor of progressive renal failure. All apolipoproteins except apoB-100 are transferred to other lipoproteins. Apolipoprotien B may be the only lipoprotein to rise in normolipidemic diabetic patients. For all the previous reasons we chose apolipoprotein B for our study.

Elevated lipids may increase the morbidity of macular edema and affect the severity of diabetic retinopathy.

It is likely that patients with diabetic retinopathy are at higher risk to progress to overt nephropathy. So the eye is considered the window of kidney in both type1 and type 2 Diabetes.

AIM OF WORK

- Is to find a relation between dyslipidemia and diabetic nephropathy using apolipoprotein B-100.
- To detect patients with different grades of diabetic retinopathy and detect its relation to the degree of diabetic nephropathy.
- To find a relation between apolipoprotein B and diabetic retinopathy.
- To try to prove that apolipoprotein B -100 can be used as an early detected risk factor to assess diabetic nephropathy and retinopathy.

Diabetes Mellitus

DEFINITION AND DESCRIPTION OF DIABETES MELLITUS

Diabetes mellitus is characterized by chronic hyperglycemia with disturbances of carbohydrate, fat, and protein metabolism resulting from defects in insulin secretion, insulin action, or both¹.

Symptoms of marked hyperglycemia include polyuria, polydipsia, weight loss, sometimes with polyphagia, and blurred vision. Impairment of growth and susceptibility to certain infections may also accompany chronic hyperglycemia 2 .

Acute, life-threatening consequences of uncontrolled diabetes are hyperglycemia with **ketoacidosis** or the **nonketotic hyperosmolar** syndrome 2 .

Long-term complications of diabetes include **retinopathy** with potential loss of vision; **nephropathy** leading to renal failure; **peripheral neuropathy** with risk of foot ulcers, amputations, and Charcot joints; and **autonomic neuropathy** causing gastrointestinal, genitourinary, and cardiovascular symptoms and sexual dysfunction. Patients with diabetes have an increased incidence of **atherosclerotic cardiovascular, peripheral arterial and cerebrovascular** disease. Hypertension and abnormalities of **lipoprotein** metabolism are often found in people with diabetes ².

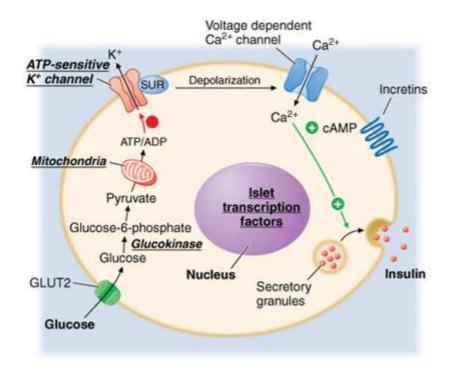


Fig 1: Mechanism of insulin secretion by beta cells.³

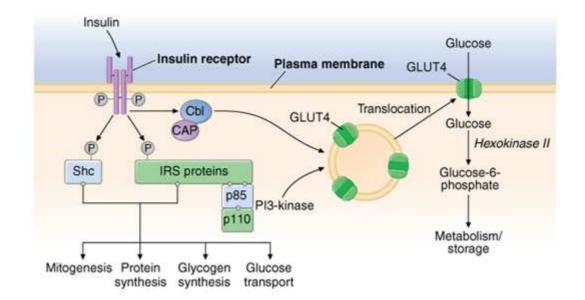


Fig 2: Mechanism of insulin action on peripheral cells.³

CLASSIFICATION OF DIABETES MELLITUS

Table 1: Etiological classification of diabetes mellitus²

ETIOLOGIC CLASSIFICATION OF DIABETES MELLITUS

I. Type 1 diabetes (β -cell destruction, usually leading to absolute insulin deficiency)

A. Immune mediated

B. Idiopathic

II. Type 2 diabetes (may range from predominantly insulin resistance with relative insulin deficiency to a predominantly secretory defect with insulin resistance)

III. Other specific types

- A. Genetic defects of β -cell function
- **B.** Genetic defects in insulin action
- C. Diseases of the exocrine pancreas
- **D. Endocrinopathies** e.g. Cushing syndrome and hyperthyroidism
- **E. Drug- or chemical-induced** e.g. Glucocorticoids

F. Infections

e.g. mumps and EBV

G. Anti–insulin receptor antibodies

H. Other genetic syndromes sometimes associated with diabetes

e.g. Down's syndrome

IV. Gestational diabetes mellitus (GDM)

DIAGNOSTIC CRITERIA FOR DIABETES MELLITUS

The criteria for the diagnosis of diabetes are shown in <u>table 2</u>². Three ways to diagnose diabetes are possible, and each, must be confirmed, on a subsequent day, by any one of the three methods given in <u>table 2</u>. (The use of the hemoglobin A1C (A1C>or =6.5%) for the diagnosis of diabetes has been recently recommended)⁴.

Table 2: Criteria for the diagnosis of diabetes:

- FPG ≥126 mg/dl (7.0 mmol/l). Fasting is defined as no caloric intake for at least 8 h.*
 - OR
- 2. Symptoms of hyperglycemia and casual plasma glucose ≥200 mg/dl (11.1 mmol/l). Casual is defined as any time of day without regard to time since last meal. The classic symptoms of hyperglycemia include polyuria, polydipsia, and unexplained weight loss*.
 OR
- 3. 2-h plasma glucose ≥200 mg/dl (11.1 mmol/l) during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.

*in the absence of unequivocal hyperglycemia