MALE SLINGS FOR POSTPROSTATECTOMY URINARY INCONTINENCE

Thesis

Submitted in partial fulfillment of M.D Degree in **Urology**

By

Ashraf Yehia khedr Abd El Salam

M.B. B.ch., Ain Shams University, ۱۹۹٦. M. Sc. Degree in Urology, Ain Shams University, ۲۰۰۱

Under the Supervision of

Prof. Dr. Abd El Hamid Youssef

Professor of Urology Ain Shams University

Prof. Dr. Magdy Fathalla

Professor of Urology Ain Shams University

Dr. Khaled Abd El Fattah Taema

Lecturer of Urology Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

۲..۷

Acknowledgment

First and foremost, I thank **ALLAH**, the most merciful for guiding me through and giving me the strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, Professor Dr. Abdelhamid Youssef, Professor of urology, Faculty of Medicine, University. for his continuous Ain Shams and valuable supervision encouragement and guidance throughout this work. It has been an honor and a privilege to work under his generous supervision.

Also, I wish to express my deepest gratitude to Professor Dr. Magdy Fathallah, Professor of urology, Faculty of Medicine, Ain Shams University, for his kind support, help and careful supervision.

Words cannot suffice my sincere thanks and gratitude to Ass. Professor Dr. Khaled Teama, Assistant Professor of urology, Faculty of Medicine, Ain Shams University, for his great help and support and his continuous guidance, correction and explanation throughout the course of this work, without which I could not achieve this study as I have. I wish to be able one day to return to him a part of what he had offered to me.

I also wish to extend my thanks to Dr. Khaled Fawaz, Lecturer of urology, Faculty of Medicine, Ain Shams University, for his help and support in the urodynamic studies.

No words could adequately express my deepest appreciation to my family, for their continuous support. I shall remain indebted to them all my life.

Special thanks to my patients, wishing them a happy and healthy life.

LIST OF CONTENTS

Title Pa	
Introduction	۰
Aim of work	٣
Review of literature	
Anatomy	٤٤
Physiology of continence	۲۱
Etiology and pathophysiology	٣٥
• Evaluation of PPI	٤٧
• Treatment of PPI	٦٢
Patients and methods	۹٦
Results	۱۰۸
Discussion	١٢٣
Conclusion	۱۳۳
Summary	١٣٤
References	١٣٦
Arabic summary	

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure 1.1	Sagittal section through the pelvis and perineu of an adult male	
Figure 1.7	Coronal section through the bladder, prostatic and membranous urethrae	
Figure \. "	External urethral muscles within the deep perine pouch	
۰.۴ Figure	The pelvic floor musculature in an adult male	۱۳
۰.• Figure	Borders of the perineal membrane	١٤
Figure \. ٦	Illustration of the deep perineal pouch and the pelvic diaphragm in an adult male	
Figure ۲.۱	Neuronal control during bladd emptying/voiding	
Figure ⁷ . ⁷	Neuronal control during bladder filling/urisstorage	
Figure " . \	A pie chart representing the four major etiologi of PPI	
Figure °.1	Algorithm for managing incontinence after AU placement	
Figure °. ⁴	Algorithm for initial and specialized manageme of PPI in men	
Figure 7.1	The Argus sling set	۱۰٤
Figure ^v . ^v	Comparison regarding operative time	١١٠
Figure [∨] .۲	Correlation between postoperative uroflow valu in group '	
Figure [∨] .۳	Correlation between pre- and postoperative ALI values in group \	
Figure [∨] . '	Correlation between postoperative uroflow valu in group ^Y subgroup A	

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure [∨] .∘	Correlation between pre- and postoperative ALPP values in group ⁷ subgroup A	
Figure [∨] .٦	Correlation between postoperative uroflow values in group γ subgroup B	
Figure [∨] . [∨]	Correlation between pre- and postoperative ALPP values in group ^Y subgroup B	
Figure ^v . ^A	Correlation between postoperative uroflow values in group γ subgroup C	
Figure ^v .۹	Correlation between pre- and postoperative ALPP values in group ^Y subgroup C	

LIST OF TABLES

Tab. No.	Title	Page No.

Table 7.1	Neuronal pathways of urine storage and	
	micturtion	۲۹
Table ".)	Examples of prevalence of UI after radical	
	prostatectomy	۳۸
Table ^w . ^v		
Table ^w . ^w	Etiologies of PPI reported in ^ articles	
Table °.1	Drugs used in the treatment of detrusor	
	overactivity	۲۷
Table °. ⁷	-	
	therapy for PPI	۸۲
Table °."		
Table ^v . ^v	Postoperative uroflowmetric followup values	
	in group \	117
Table ^V . ⁷	Postoperative uroflowmetric followup values	
	in group ^Y subgroup A	110
Table ^v . [•]		
	in group ^r subgroup B	
Table [∨] .٤	Postoperative uroflowmetric followup values	
	in group ^۲ subgroup C	١٢١

LIST OF ABBREVIATIONS

ACh	Acetylcholine
AR	Adrenoreceptor
AUS	Artificial urinary sphincter
BCG	Bacille-Calmette-Guerin
BCR	Bulbocavernosus reflex
BPH	Benign prostatic hyperplasia
CNE EMG	Concentric needle electromyography
CNS	Central nervous system
CSPANs	Caspaisin-sensitive primary afferent neurones
DLPP	Detrusor leak point pressure
EMG	Electromyography
eNOS	Endothelial nitric oxide synthase
ER	Extended release
ES	Electrical stimulation
ICS	International Continence Society
iNOS	Independent nitric oxide synthase
IR	Immediate release
nNOS	Neuronal nitric oxide synthase
NO	Nitric oxide
NOS	Nitric oxide synthase
OR	Odds ratio

LIST OF ABBREVIATIONS (Cont...)

Pabd	Intra-abdominal pressure
PAG	Periaqueductal grey
Pdet	Detrusor pressure = Pves-Pabd
PFMs	Pelvic floor muscles
PFMT	Pelvic floor muscle training
PMC	Pontine micturition center
PPA	Phenypropanolamine
PPI	Postprostatectomy incontinence
PPUI	Postprostatectomy urinary incontinence
Pves	Intravesical pressure
PVR	Postvoiding residual
RR	Risk ratio
SPN	Sacral parasympathetic nucleus
SUI	Stress urinary incontinence
TCA	Tricyclic antidepressant
TURP	Transurethral resection of prostate
UI	Urinary incontinence
UPP	Urethral pressure profile
UUI	Urge urinary incontinence
VLPP	Valsalva leak point pressure

INTRODUCTION

Postprostatectomy incontinence (PPI) is a devastating complication that is frustrating for both the patient and the surgeon. The specific incidence rate of postprostatectomy incontinence is difficult to ascertain. However, regardless of the type of prostatectomy; either being transurethral, transvesical or radical retropubic prostatectomy, or the nature of the prostate disease, several risk factors are common to all. The most significant risk factors include preexisting detrusor and/or sphincteric dysfunction, increasing age, and surgical expertise. (*Diokno et al.*, 199A).

General management include behavioral techniques, pharmacological therapy and surgical intervention. As for surgical intervention, treatment options include placement of an artificial sphincter, collagen injections and male slings. The treatment of PPI continues to evolve with a notable preference towards the bulbourethral sling (*Petrou et al.*, $r \cdot \cdot r$).

Currently, three different forms of male sling has been described: one using synthetic material and two using human fascia or dermis (*Cespedes et al.*, $r \cdot \cdot i$).

Being a disabling disorder, urodynamic studies in patients with PPI were reviewed to determine its etiology. Although sphincteric incompetence is the most common mechanism contributing to incontinence, bladder dysfunction may coexist or be an isolated cause of PPI. Therefore, urodynamic studies are important to illustrate the exact cause(s) of incontinence in each individual patient. So that treatment based on the urodynamic evaluation is effective in restoring continence and improving the patient's quality of life (*Winters et al.*, 199A).

AIM OF WORK

The aim of this study is to emphasize the role of bulbourethral slings in the treatment of PPI, as being a fast, less expensive and reliable method in comparison to other modalities.

ANATOMY

To understand postprostatectomy incontinence (PPI), it is first important to review the normal continence anatomy in the male, before and after prostatectomy. Normal continence in the male requires a stable, compliant detrusor, and a competent bladder outlet. Each of these anatomically distinct structures in turn requires normal innervation, normal smooth and striated musculature, and intact supporting structures and soft tissue components (*Hadley et al.*, 19A7).

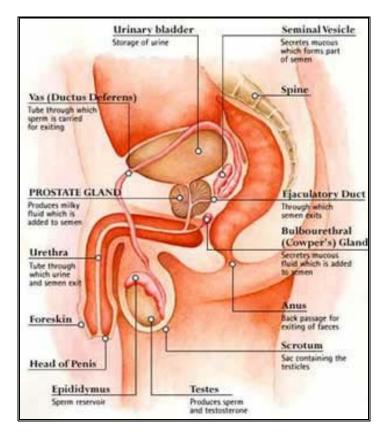


Figure (1.1): Sagittal section through the pelvis and perineum of an adult male (*Light et al.*, 1997)

The urethral sphincter:

<u>Traditionally, the urethral sphincter is considered to be</u> <u>composed of two components:</u>

(**'**)**Proximal urethral sphincter**, which represents a direct continuation of the detrusor smooth muscle at the bladder neck and proximal urethra, consists of the bladder neck, prostate, and prostatic urethra to the level of the veromontanum. It is innervated by autonomic parasympathetic and sympathetic fibers. This portion of the continence mechanism is removed during prostatectomy, leaving only the distal sphincter to prevent urinary leakage (*Brooks et al, 1994*).

A- The bladder neck:

The relatively large muscle fibers of the smooth muscle of the bladder wall form branching, interlacing bundles loosely arranged into inner longitudinal, middle circular and outer longitudinal layers. Near the bladder neck, the detrusor muscle is clearly separable into the three layers previously described. The large-diameter muscle fascicles are replaced by much finer fibers. In men, radially oriented inner longitudinal fibers pass through the internal meatus to become continuous with thinner longitudinal layer of the smooth muscle in the urethra (mentioned later). The middle layer forms a circular preprostatic sphincter that is responsible for continence at the level of the bladder neck. This muscle is richly innervated by adrenergic fibers (*Brooks et al.*, 199).

The outer longitudinal fibers are thickest posteriorly at the bladder base. In the midline, they insert into the apex of the trigone and intermix with prostatic capsule smooth muscles. Laterally, the fibers from this posterior sheet pass anteriorly and fuse to form a loop around the bladder neck, which is thought to participate in continence at the bladder neck. Some anterior fibers course forward to join the puboprostatic ligament (*Delancey*, 19A9).

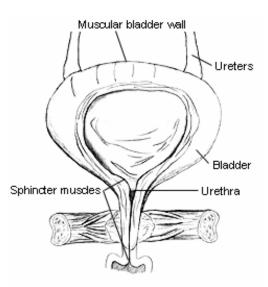


Figure (1.7): Coronal section through the bladder, prostatic and membranous urethrae (*Delancey*, 1914).

B- The prostate and prostatic urethra:

The normal prostate weight ranges from 1^{-17} gm, measuring "cm in length, cm in width, and "cm in depth and