

Ain Shams University

Faculty of Engineering

Scheduling of Numerically Controlled Hoist Handling Systems

A Thesis

By

Tamer Ahmed Aly Aly Ismail

Submitted in partial fulfillment of the requirements of the degree of M.Sc. in Mechanical Engineering

Supervised by

Prof. Dr. Amin K. El-Kharbotly

Ass.Prof.Dr. Nahid H. Afia

Dr. Wael N. Akl

Cairo 2011

Statement

This thesis is submitted in the partial fulfillment of master degree in Mechanical Engineering to Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other university.

Signature

Tamer Ahmed Aly Aly Ismail

كلية الهندسة

جدولة نظم المناولة بالروافع ذات التحكم العددي

رسالة مقدمة من المهندس/ تامر أحمد علي علي إسماعيل

> للحصول على درجة الماجستير في الهندسة الميكانيكية

Examiners Committee

The undersigned certify that they have read and recommend to the Faculty of Engineering – Ain Shams University for acceptance a thesis entitled "Scheduling of Numerically Controlled Hoist Handling Systems", submitted by Tamer Ahmed Aly Aly Ismail, in partial fulfillment of requirements for the degree of Master of Science in Mechanical Engineering.

Signature

Prof Dr. Farid Abdel Aziz Tolba

Professor of Production Engineering

Faculty of Engineering - Ain Shams University

Prof Dr. Attia Hassan Gomaa

Professor of Industrial Engineering

Faculty of Engineering- Shobra - Benha university

Prof Dr. Amin K. El-Kharbotly

Professor of Production Engineering

Faculty of Engineering - Ain Shams University

Date: / / 2011

ACKNOWLEDGEMENT

First of all, I would like to thank GOD for giving me the strength and health to do this project work until it was done.

I owe my deepest gratitude to my parents and my brother for their personal support and great patience at all the times.

I am heartily thankful to my supervisor Prof.Dr.Amin K. El Kaharbotly, whose motivation, guidance and support from the initial to the final level inspired me to develop an understanding of the subject.

I would like to convey my gratitude for Dr.Nahid Afia for her ongoing support and offering continuous help to find my way.

I would also like to acknowledge Dr. Wael Akl and Dr. Mohamed El Beheiry for their support and guidance.

I am most grateful to Eng. Ahmed Seif, Eng. Ghada Shedid, Eng. Raghda Bahaa and all my colleagues for their help and encouragement.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Tamer A. Ismail

Summary of the M.Sc. Thesis

"Scheduling of Numerically Controlled Hoist Handling Systems"

by:

Tamer Ahmed Aly Aly Ismail

Many Industrial processes involve multistage production lines where material handling is performed by a computer controlled hoist or robot.

Production systems such as electroplating lines, printed circuit boards production lines and other chemical processes employ hoists to transport jobs between different stations represented by the processing tanks. The processing times in the different processing stations can be either described by a fixed value or an interval value prescribed between a lower and upper bounds known as a time window.

Such systems are known as no wait systems since the job has a maximum processing time in each station that it must not exceed. Thus the hoist must be ready to transfer the job to its next processing station before exceeding the permissible processing time.

Production stages with long processing times may create severe bottlenecks degrading the system throughput. Therefore, a group of duplicate stations can be added in order to eliminate such bottleneck. This stage is denoted by multi station stage. The problem under consideration accounts for the possibility of having a number of processing stages sharing one physical station in order to reduce facility costs. This type of station is denoted by multi function station.

Efficient scheduling of such hoists can improve production throughput, as well as the utilization of the hoist and the processing stations.

The objective of hoist scheduling problems is to find a sequence of hoist moves that minimizes the cycle time or maximizes the throughput of a production system.

Hoist scheduling problem has been addressed by several researchers. Hoist scheduling problem with fixed processing time and has been solved polynomially. Hoist scheduling problems with time windows have been proven to be NP hard in a very strong sense. Several branch and bound algorithms have been introduced for solving hoist scheduling problems of identical parts with time windows processing times. Other researchers introduced genetic algorithms and artificial intelligence approaches to generate cyclic schedules. Other approaches extend simple cycles towards the generation of higher degree cycles. They proved that higher degree cycles allows more than one part being loaded into the line while performing the cycle and thus increasing the chance of achieving an improved schedule. Hoist scheduling problem with multiple product types has received relatively little attention as only few heuristics approaches are known since the problem with multiple items has been proven to be NP hard.

In the present work a proposed algorithm is developed based on the enumeration of all possible hoist moves before every hoist action. It checks that such moves will not lead to any defective jobs in the remaining processing tanks. A nested priority rule is developed and applied to select the most appropriate hoist action among all enumerated hoist actions. As a conflict occurs either due to the unavailability of a vacant tank or due to the unavailability of the hoist, a backtracking algorithm is applied in order to resolve the conflict. The developed heuristic was computerized through a specially designed simulation program which helps in determining detailed statistical information representing the utilization of line facilities.

The algorithm was tested on three bench mark problems of considerable line size simulating real life case problem. The results showed that the proposed algorithm leads to comparable results with those obtained by exact mathematical methods with a difference in the cycle time lying between 2.5-14 %. Also the algorithm was applied to a problem of two product types and the same results as that obtained by other heuristic approaches were achieved. The algorithm was applied to different problem configurations to study system performance under the effect of different scheduling parameters such as hoist action times, time window processing times and the usage of parallel processing tanks at the bottleneck stages. Also the performance was tested in case of processing multiple product types, where the sequencing between jobs of different product types was found to have a positive effect on the system throughput under certain conditions.

The proposed algorithm was applied to a practical example of an anodizing production line, the obtained results and conclusions from the above mentioned experiments were applied to the problem to examine their effectiveness.

Mathematical models for a number of special problems are developed. The mathematical models determine the system cycle times in terms of different system parameters as well as the required conditions for the system to perform the ideal sequence of hoist moves.

Scheduling of Numerically Controlled Hoist Handling Systems

Abstract

Many production systems such as electroplating lines and printed circuit boards production lines employ hoists to transport jobs between different stations represented by the processing tanks. The processing times in the different processing stations can be either described by a fixed value or an interval value prescribed between a lower bound and an upper bound known as a time window.

Such systems are known as no wait systems since the job has a maximum soaking time in each tank that it must not exceed, thus the hoist must be ready to transfer the job to its next processing station before exceeding the permissible soaking time.

Efficient scheduling of such hoists can improve production throughput, as well as the utilization of the hoist and the processing tanks.

Hoist scheduling problems with fixed processing time and has been solved polynomial. Hoist scheduling problems with time windows have been proven to be NP hard in a very strong sense. Several approaches such as branch and bound algorithms and artificial intelligence approaches have been introduced for solving hoist scheduling problems of identical parts with time windows processing times. Other researchers considered the case of single product, multiple hoists either on parallel tracks or sharing the same track. Hoist scheduling with multiple product types has received little attention, as only few heuristics approaches are known.

This research addresses hoist scheduling problem for a single hoist, multiple products system, each product type have its own processing sequence and processing time at each stage. A heuristic algorithm is developed for scheduling of hoist moves. The algorithm considers an extended system with multi- function tanks and multi-tank stages. The results of applying the algorithm showed that the proposed algorithm leads to comparable results with test problems which use exact mathematical methods with a difference in the cycle time lying between 2.5-14 %. The algorithm was capable to solve a problem of multiple product types. Exactly the same results were obtained as that obtained by the other heuristics. The results prove that the proposed heuristic can be used efficiently for single hoist multiple product scheduling problems.

The algorithm was also applied to study the effect of different system parameters such as hoist action times, time window processing times and the usage of parallel processing tanks at the bottleneck stages on the system performance in terms of throughput and facilities utilization. The obtained results were applied to a case study of considerable line size to study the effect of changing scheduling parameters on the performance of the system. Mathematical models to determine the system cycle time and other parameters are developed for a number of special cases.

Keywords: Hoist scheduling, No wait system, Time window, Heuristic, Electroplating

List of Figures

No	Description	Page
2.1:	Three machines robotic cell with central robot	3
2.2:	A production system with successive processing stations and a	
	single hoist	5
3.1:	A flow chart for the proposed algorithm	20
3.2:	A production system with transferable and untransferable jobs	22
3.3:	Effect of transferring any job on other immersed jobs	24
3.4:	Different job status at the enumeration time	25
3.5:	A set of candidate jobs with POLB, PRLB and input buffer jobs	26
3.6:	A set of candidate jobs with PRLB and input buffer jobs	26
3.7:	A set of candidate jobs with PRLB jobs only	27
3.8:	Steps of transferring a job to its next processing tank	29
3.9:	System status after performing a hoist move	30
3.10:	A signal flow diagram for the automated hoist control system	33
4.1:	Hoist schedule for a system of two product types	42
4.2:	System throughput and facilities utilization for an equal	
	processing time system	45
4.3:	Hoist move sequences for a system of two processing tanks and	
	equal processing times	46
4.4:	Hoist move sequences for a system of three processing tanks	
	and equal processing times	47
4.5:	System throughput and facilities utilization for an unequal	
	processing times system	49
4.6 :	Effect of hoist action time on parallel tanks utilization and	
	system throughput	51
4.7:	Hoist move sequence for a system of four parallel processing	
	tanks at different (t_h/t_p) ratios	52
4.8:	Comparison between system throughput with three & four	
	parallel processing tanks at a certain (t_h/t_p) ratio	52

4.9:	A system of successive processing stations of equal processing	
	times and a bottleneck station with parallel processing tank	53
4.10:	Hoist moves sequence for a system of successive processing	
	stations with a bottleneck station containing parallel processing	
	tanks	54
4.11:	Effect of increasing number of stations served by the hoist on	
	the system throughput and the utilization of parallel processing	
	tanks	55
4.12:	A production system with two processing stages with parallel	
	tanks at the second stage	56
4.13:	Effect of processing times ratio on the system throughput and	
	the utilization of parallel processing tanks	57
4.14:	Hoist move sequences at different processing times ratio	
	(PS_1/PS_2)	59
4.15:	Effect of process time window on the maximum percentage	
	improvement in the system throughput at different (th/tp) ratios	61
4.16:	Hoist moves sequence at low hoist action times to processing	
	time ratios where time window has no effect on system	
	throughput	61
4.17:	Hoist moves sequence at a certain hoist action times to	
	processing time ratio with and without time window	62
4.18:	Hoist moves sequence at high hoist action times to processing	
	time ratios with and without time window	62
4.19:	Comparison between system throughput and hoist utilization	
	with and without time window at different values for hoist	
	action times	64
4.20:	Effect of scheduling of different product types on the system	
	cycle time	66
4.21:	Cycle times for a two products system with and without	
	sequencing where an improved cycle time is obtained in case of	
	sequencing	66

XII

4.22:	Cycle time for two products system where sequencing has no	
	effect on system cycle time	67
4.23:	Anodizing production line with single hoist	68
4.24:	Anodizing line with two hoists and a shared tank between the	
	two hoists	73
4.25:	Boundaries of solution zones	75
4.26:	Effect of time window on the boundaries of solution zones	76
5.1:	Hoist moves sequence at the threshold shooting point	82
5.2:	Hoist moves sequence at different processing values at the first	
	processing stations	84
5.3:	Three processing stations of different processing times	85
5.4:	Different combinations for processing times at three stages	
	processing system	85
5.5:	A system of successive processing stations of different	
	processing times	86

List of Tables

No	Description	Page
4-1:	Selected system configurations and controlling parameters	20
	for the study plan	39
4-2:	Comparison between results of the proposed algorithm with	
	the results of exact methods	40
4-3:	Processing times for a system of three processing tanks and	
	two product types	41
4-4:	Processing stages and their corresponding processing times of	
	an anodizing production line	68
4-5:	System behavior at different configurations at 1 minute hoist	
	action times	70
4-6:	System behavior at different configurations with 0.5 minute	
	hoist action times	71
4-7:	Comparison between cycle times at different system	
	configurations with different values of hoist action times	72
4-8:	Comparison between system cycle time with a single hoist	
	and with two hoists	73
5-1:	Processing times for a system of seven processing stages	87
App-1:	Processing times and hoist loaded moves for Philips bench	
	mark	97
App-2:	Hoist empty moves matrix for "Philips" bench mark	98
App-3:	Processing times and hoist loaded moves for "Ligne 1" and	
	"Linge 2" bench marks	99
App-4:	Hoist empty moves matrix for "Ligne 1" bench mark	100
App-5:	Hoist empty moves matrix for "Ligne 2" bench mark	101