

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications Engineering Department

Satellite Data Compression for Ultra/Hyper Spectral Images

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering)

Submitted By: Eng. Ayman Mahmoud Mohamed Ahmed

Supervised By

Prof. Dr. Salwa H. Elramly Prof. Dr. Mohamed Elsharkawy

CAIRO – May 2013

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Examiners Committee

Name:	Ayman Mahmoud Mohamed Ahmed	
Thesis:	Satellite Data Compression for Ultra/Hyper Spectral Images	
Degree:	Doctor of philosophy in Electrical (Electronics and Communication Enginee	Engineering ring)
Name, Title and Affiliation Signature		

1. Prof. Magdy A. Bayoumi	
Director of The Center for Advanced Computer Studies	
(CACS)	• • • • • • • • • • • • • • • • • •
Department Head of Computer Science	
University of Louisiana at Lafayette, USA.	
2. Prof. Abdel Moniem Abdel Zaher Wahdan Computer engineering and Systems Department Faculty Of Engineering, Ain Shams University	
3. Prof. Salwa H. Elramly Electronics and Communication Engineering Department Faculty of engineering, Ain Shams University	
Date:	25/5/2013

All gratitude and thanks to

"ALLAH" who guides me to bring forth

this thesis.

Acknowledgement

I would like to acknowledge my family who supported me during my study for PhD; and I would like to admire the role my family has played to provide me with comfort and suitable environment for research; also I appreciate understanding of my research stress.

I want to acknowledge my parents to their support and a lot of prayers they done to help in accomplishment of my studies.

Many grateful thanks to my supervisors who tough me a lot, and to their guidance which helped me succeed in my research.

Finally, I would like to mention that these research has been conducted in National Authority for remote sensing and space science NARSS which supported me with all resources and equipment in my research.

Contact information:

Eng. Ayman Mahmoud Mohamed Ahmed

Tel: +201005672125

E-mail: a_ymn2002@yahoo.com

ayman.mahmoud@narss.sci.eg

ABSTRACT

Hyperspectral imaging and Ultraspectral imaging are of a great interest these days; as remote sensing earth observation technology and applications are migrating from just plane imaging in few spectral bands toward intensive spectral imaging, mainly for the purpose of object identification.

Few satellites are carrying hyperspectral and / or Ultraspectral imagers are now operational in orbit, earth observation mission 1 (EO-1) from NASA is the most famous one; it carries Hyperion imager, which provides the scientific community with tremendous amount of data and information.

The need to compress this data represents a new challenge for researchers and designer of such space systems. Lossy and lossless compression algorithms are very well fitting the images and video scenes, as it exploits the redundancy in a very good way; on the other hands hyperspectral and Ultraspectral data has a new dimension of redundancy not well exploited by these techniques.

We introduce a new concept of compression that combines lossless and lossy algorithms; where part of the

I

bands of hyperspectral data cube is compressed in lossless mode, while the other is lossy compressed.

On the other hand, a new lossless technique is proposed; it enhances the average bit rate required to encode the data.

Selection of lossless and lossy bands for compression is based on cross correlation analysis between bands; high correlated bands are lossless compressed, this increases the compression ratio as homogenous data is easily compressed; on the other hand, uncorrelated bands are lossy compressed.

Classification of the bands to be compressed lossy or lossless are carried out by calculating the spectral cross correlation matrix for the data cube; this matrix gives a complete picture about the similarity of band in the cube.

The effect of compressing part of the data cube by lossy compression is certainly less than compressing the whole data cube in a lossy mode; we investigated this effect to measure the losses, using Signal to noise ratio and RX anomaly detection.

TABLE OF CONTENTS

List of l	Figures	VI
List of [Гables	VIII
List of A	Abbreviations	IX
List of S	Symbols	XI
1. IN7	FRODUCTION	1
1.1 1.2 1.3 1.4	Introduction Problem Definition Objectives Outline of the Thesis	1 3 4 5
2. UL	TRASPECTRAL AND HYPERSPECTRAL IMAGIN	NG 7
2.1 2.2 2.3 2.4 2.5 2.6	Introduction Principals of Satellite Imaging Characteristics of Ultra and Hyperspectral Data Ultraspectral and Hyperspectral Data Cube Hyperspectral Instruments Onboard Satellite Conclusion	7 11 13 17 20 25
3. UL COMPI	TRASPECTRAL AND HYPERSPECTRAL DATA RESSION TECHNIQUES	26
3.1 3.2	Introduction Ultraspectral and Hyperspectral Data Compression Requirem	26 nents
3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Requirements for Onboard Compression Lossless Hyperspectral Data Compression Lossy Hyperspectral Data Compression Vector Quantization Transform Coding Hyperspectral Lossy Compression Techniques Assessment Peak Signal to Noise Ratio - PSNR RX Anomaly Detection	31 34 37 38 39 42 42 44 45
 3.11 Conclusion		
4.1	Introduction	
4.2 4.3 4.4 4.5	Spectral Similarity Measurement Mutual Information Cross Correlation Inter-Band Spectral Cross Correlation Matrix	54 54 55 57
	*	

4.6	Cross Correlation Matrix Analysis	64
4.7	Edge Detection Techniques	65
4.7.1	Search Gradient Based Edge Detection	66
4.7.1.1	Sobel Method	67
4.7.1.2	2 Prewitt Method	67
4.7.1.3	B Roberts Method	68
4.7.2	Laplacian Based Edge Detection	69
4.7.2.1	Laplacian of Gaussian Method	69
4.7.2.2	2 Canny Edge Detection	70
4.8 4.9	Edge Detection Applied On Spectral Correlation Matrix Conclusion	72 75
5. HY	BRID COMPRESSION OF ULTRASPECTRAL	AND
HYPEF	RSPECTRAL DATA CUBE	77
5.1	Introduction	77
5.2	Entropy Model for Hyperspectral Data	
5.3	Lossless Compression	
5.3.1	Bands Re-Grouping	
5.3.2	Global Reference Band for Spectral Prediction	
5.3.3	Intra-band Spatial Prediction	
5.3.4	J-Prediction.	
5.4	JPEG2000 Lossy Compression	95
5.5	Summary of Proposed Hybrid Compression Technique	97
5.6	Conclusion	99
6. RE	SULTS ANALYSIS AND MODEL ASSESSMENT	Г 101
61	Introduction	101
6.2	Hybrid Compression Assessment	
6.3	Comparison Table	
6.4	Conclusion	
7. CO	NCLUSION AND FUTURE WORK	109
71	Conclusion	109
7.2	Suggestions for Future Work	112
Referen	Ices	113
Publica	tions	125
ANINIEN	A MATLAD and for babyid companying	107
AININE2	A – MAILAB COUE IOF NYDFIG COMPRESSION	12/
A. N	1ASTER FILE	127
B. E	STIMATION OF CROSS CORRELATION MATRIX:	129
C. C	CANNY EDGE DETECTION OF SPECTRAL CORRELA	TION
MATI		130
D. E	XTRACTING CORRELATED GROUP OF BANDS	
E. C	ALCULATION OF GLOBAL REFERENCE BAND:	

F.	J-PREDICTOR:	133
G.	JPEG-LOSSLESS (MODIFIED FOR 16BIT OPERATION)	134
H.	RX ANOMALY DETECTION CORRELATION	142

LIST OF FIGURES

Figure 2-1 – Blue Marble Photograph, 1972, [1]	. 7
Figure 2-2 – Image In Multi-Bands[1].	13
Figure 2-3 – Hyperspectral / Ultraspectral Image[1]	17
Figure 2-4 – Hyperspectral Image Cube [1]	20
Figure 2-5 – Key Performance Characteristics Of Hyperion Imager[3]
	21
Figure 3-1 – Data Acquisition Chain With Data Compression[11]3	31
Figure 3-2 – Prediction Neighborhood In 3D-CALIC[15]	35
Figure 3-3 - Co-Centric Windows In Hyperspectral Cube[43]	47
Figure 4-1 - Bands (5-10) In "Aviris_Sc0" Hyperspectral Data Cube	Э
	51
Figure 4-2 - Correlation between Successive Bands- "Maine_Sc10"	
	52
Figure 4-3 – Spectral Response For Pixel(S) [21]	53
Figure 4-4 – Principles Of SAM[21]	53
Figure 4-5 – Symmetrical Correlation Matrix-"Ertaale" Data Sample	Э
	57
Figure 4-6 – Image View of Aviris_Sc0 SCM	58
Figure 4-7 – Image View of Aviris_Sc3 SCM	58
Figure 4-8 – Image View of Aviris_Sc10 SCM	59
Figure 4-9 – Image View of Aviris_Sc18 SCM	59
Figure 4-10 – Image View of F960705t01 SCM	50
Figure 4-11 – Image View of Hawaii_Sc01 SCM	50
Figure 4-12 – Image View of Ertaale SCM	51
Figure 4-13 – Image View of Lakemonona SCM	51
Figure 4-14 – Image View of Mtsthelens SCM	52
Figure 4-15 – Image View of Maine_Sc10 SCM	52
Figure 4-16 – Image View of SCM For "AIRS069"	53
Figure 4-17 – Image View of SCM For "AIRS070"	53
Figure 4-18 – Image View of SCM For "AIRS071"	54
Figure 4-19 – Sobel Operator [54]	57
Figure 4-20 – Prewitt Operator[54]	58
Figure 4-21 – Roberts Operator[54]	58
Figure 4-22 – Commonly Discrete Approximations for Laplacian	
Filter	59
Figure 4-23 – Gaussian Mask	70
Figure 4-24 – Canny Edge detection for Aviris_sc10 -SCM	73
Figure 4-25 - Canny Edge detection for SCM "ErtaAle" data sample	e
	73

Figure 4-26 – Finding IBCS Using "Canny Method" In
"Corr Mtxhel" SCM
Figure 5-1 – Finding Edges in Corr Mtxer SCM, Threshold (0.7 to
0.1)
Figure 5-2 – Bands Correlation Map- Gobs Correlation With Each
Other
Figure 5-3 – Spatial Images from the Hyperspectral Dataset
LakeMonona: (a) band 1; (b) band 20; (c) band 220 87
Figure 5-4 – Neighboring Pixels Location Relative To Predicted
Pixel- Median Predictor[59] 89
Figure 5-5 – 3-D predictor
Figure 5-6 – Compression Ratios for Different Wc. For Individual
Bands in "Erta_Ale" Data Sample
Figure 5-7 – Band 15, GRB, Prediction Error of Erta_Ale Data
Sample
Figure 5-8 – Bit Rate-Bpppb in Erta_Ale J-Predictor vs. Original
Data with Median Predictor Using Arithmetic Coding
Figure 5-9 – PSNR for all bands in Erta_Ale JPEG2000 Lossy 96
Figure 5-10 – Hybrid compression technique diagram
Figure 6-1 – Anomaly Map of Original and Reconstructed Erta_Ale
Hyperspectral Data Cube103

LIST OF TABLES

Table 2-1 – Division Of Electromagnetic Spectrum for Remote	
Sensing [1]	12
Table 2-2 - Examples of Operational Instruments for Hyperspect	ral
Imaging	19
Table 2-3 - Summary Of Ultra/Hyperspectral Data Samples Deta	ails
	23
Table 5-1 – Group Of Bands / Correlation Threshold Value Of	
Detection	83
Table 6-1 – Final Comparison Results	. 106

LIST OF ABBREVIATIONS

AIRS	Atmospheric Infrared Sounder
AIS	Airborne Imaging Spectrometer
AVIRIS	Airborne Visible Infra-Red Imaging Spectrometer
CALIC	Context-Based, Adaptive, Lossless Image Codec
CDF	Cohen-Daubechies-Feauveau
COTS	Component Of The Shelf
DWT	Discrete Wavelet Transform
Envi-Sat	Environmental Satellite
ERS	European Remote Sensing Satellite
FLOSS	Fast Lossless Free/Libre and Open Source Software
GOB	Group Of Bands
GRB	Global Reference Band
GSD	Ground Sampling Distance
IBCS	Inter-Band Correlation Square
IBCT	Inter-Band Correlation Triangle
IWT	Integer Wavelet Transform
JPEG	Joint Photographic Experts Group
JPL	Jet Propulsion Spectrometer
KLT	Karhunen–Loève Transform
LOCO-I	Low Complexity Lossless Compression For Images
LPD	Low Probability Detection
LSCM	Local Spectral Correlation Mapper
MSE	Mean Square Error
NASA	National Aeronautics and Space Administration
NCC	Normalized Cross Correlation
PAR	Preservation Of Application Results
PCA	Principal Component Analysis

POC	Preservation Of Classification
PSNR	Peak Signal To Noise Ratio
ROI	Region Of Interest
RX	Reed and X.Yu Algorithm
SCM	Spectral Correlation Matrix
ТМ	Thematic Mapper
VQ	Vector Quantization