Studies on phosphate solubilizing fungi isolated from rocks and agriculture soil for improvement of maize plant growth

Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science (Microbiology)

BY Peter Farag Fouad Aziz (B.Sc. Microbiology, 2008)

Supervisors

Dr. Naziha Mohamed Hassanein

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Lobna Abd El-Aziz Ahmed Moussa

Assistant Professor of Microbiology, Microbiology Department, Agriculture Research Center.

Department of Microbiology Faculty of Science

Ain Shams University (2012)

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful. I can do nothing without Him

I would like to express my deep gratitude and thanks to my dear supervisor Dr. Naziha Mohamed Hassanein, Professor of Microbiology, Department of Microbiology, Ain shams university, for her help, encouragement, continuous advice and her expert supervision to bring this thesis to more than satisfactory finish. She always patient, perfect in work organization and the best advisor. Iam proud to be one of her students and I hope that she is satisfied with me.

A great thanks to Dr. Lobna Abd El-Aziz Ahmed Moussa, assistant professor of Microbiology, Agriculture research center for her supervision, support, encouragement, valuable advices and constant help.

A deep thank to **Microbiology Department** and all **my Colleagues** in microbiology department for their assistance, support and for providing a suitable environment during my work.

Approval sheet

Studies on phosphate solubilizing fungi isolated from rocks and agriculture soil for improvement of maize plant growth

By

Peter Farag Fouad Aziz B.Sc. Microbiology, Faculty of Science, Ain Shams University, 2008

<u>Supervisors</u> Prof. Dr. Naziha Mohamed Hassanein

Professor of Microbiology, Faculty of Science, Ain Shams University.

Dr. Lobna abd El-Aziz Moussa

Assistant Professor of Microbiology, Agriculture Research Center.

Examination committee

Prof. Dr. Rawia Gamal Fathy

Emeritus Professor of Microbiology Faculty of Agriculture, Ain shams University.

Prof. Dr. Ahmed Ibrahim El-Dewany

Professor of nature products of chemisty National Research Center

Prof. Dr. Naziha Mohamed Hassanein

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Date of examination 24 / 2/ 2013

Approval date / /

University Council approved /

1

Approved

<u>This dissertation has not been previously</u> <u>submitted for any degree at this or at any</u> <u>other university</u>

Peter Farag Fouad Aziz

Contents

List of Contents

Acknowledgement List of Tables List of Figures List of Abbreviations	C
Abstract	
Chapter I: Introduction	1
Chapter II: Review of literature	
1. Biofertilizers	5
1.1 Definition of biofertilizers	5
1.2 Advantages of biofertilizers	5
1.3 Types and classification of biofertilizers	6
2. Phosphate solubilization	7
2.1 Importance of P for plants and microorganisms	7
2.2 Phosphorus in the soil system and its availability to plants	10
 2.3 Phosphate solubilizing microorganisms. 2.3.1 Phosphate solubilizing fungi. 2.3.2 Phosphate solubilizing bacteria. 2.3.3 Phosphate solubilizing actinomycetes. 2.4 The rationale for plant inoculation with phosphate solubilizing 	15 16 17 18
fungi 2.5 Screening and selection of phosphate-solubilizing fungi	19 21
2.5 Screening and selection of phosphate-solubilization 2.6 Mechanisms of phosphate solubilization	21
2.7 Mode of application of phosphate solubilizing fungi	30
 3. Rocks and rock phosphate	30 31 31 32 33 33 35 36 38
4. Maize	39

Со	nte	nts
\mathbf{v}		

4.1 Introduction	39
4.2 Taxonomy	40
4.3 Description of maize plant	41
4.4 Varieties of maize plant	42
4.5 Economic importance	44
4.6 Maize in Egypt	45
4.6.1 Varieties of Egyptian maize	45
4.6.2 Maize production in Egypt	46
4.7 Effect of PSMs on growth, yield and phosphorous economy	47

Chapter III: Materials and Methods

1. Analytical properties of soils	50
2. Isolation and identification of fungi from rhizosphere soils and rocks.	50
2.1 Isolation of fungi from rhizosphere soil	50
2.2 Isolation of fungi from rocks	51
2.3 Identification of fungi isolated from rhizosphere soil and	51
rocks3. Selection of PSF using solubilization index (SI)	52
4. In vitro studies	53
4.1 Effect of PSF isolated from rhizosphere soils and rocks on pH change of phosphate media	53
4.2 Estimation of available phosphorus concentration on PB media	53
4.3 Determination of phosphatases activity of PSF	55
4.4 Effect of different fungicides on the selected PSF	57
4.5 Quantitative assay of cytotoxicity	58
4.6 Quantitative determination of organic acids production by PSF using HPLC.	59
4.7 In vitro antagonistic activity of the PSF against each other	61
5. Greenhouse studies	62
5.1 Soil test	62
5.2 Preparation of fungal inoculum	62
5.3 Preparation of seeds and pot treatments	62
5.4 Maize growth assessment	64

6. Soil experiments	64
6.1 Determination of pH change of rhizosphere soil of maize	
treated with PSF	64
6.2 Effect of PSF on phosphorus availability in soil amended with	65
rock phosphate.	65
6.3 Fluorescein diacetate (FDA) hydrolysis assay	66
6.4 Isolation, counting and identification of fungi from rhizosphere	
of maize plants treated with the selected PSF	67
7. Media used.	68
7.1 Isolation media	68
7.1.1 Media used for isolation of fungi from rhizosphere and	
rocks	69
7.2 Selection media	70
7.3 Identification media	70
7.3.1 Media used for the genus <i>Aspergillus</i>	70
7.3.2 Media used for the genus <i>Pencillium</i>	71
7.3.3 Media used for general Mucorales	72
7.3.4 Media used for dematiaceous Hyphomycetes	72
7.3.5 Media used for the genus <i>Fusarium</i>	72
8. Statistical analysis	72

Chapter IV: Results

'3
4
4
8
30
39
39
92
99
05
09
12
16
19
19
20

Contents

6. Soil experiments	136
6.1 pH change of rhizosphere soil of maize treated with PSF	136
6.2 Effect of PSF on P availability in soil amended with rock	150
phosphate	139
6.3 FDA activities of the selected PSF in the soil	142
6.4 Isolation, counting and identification of fungi from rhizosphere	
of maize plants treated with the selected PSF	146
Chapter V: Discussion	148
Chapter VI: Summary	168
Chapter VII: References	172
Arabic summary	

Contents

		Page
Table 1:	Chemical and physical analysis of rhizosphere soil samples collected from El-Kanater region and El-Fayoum governorate	73
Table 2:	Count and frequency of fungi isolated from rhizosphere of different plants cultivated in El- Kanater and El-Fayoum on PDA media	76
Table 3:	Count and frequency of fungi isolated from rhizosphere of different plants cultivated in El- Kanater and El-Fayoum on HO media	77
Table 4:	Count and frequency of fungi isolated from rocks on PDA and HO media	79
Table 5:	Colony diameter, halo zone and solubilization index (SI) of PSF on Pikovskaya's agar at 28 ⁰ C after 5, 7 and 9 days	81

Table 6:	pH of PB medium inoculated with PSF and supplemented with TCP at 28 ⁰ C after 3, 5, and 7 days of incubation	90
Table 7:	Available P concentration of PB medium inoculated with PSF and supplemented with TCP at 28 ^o C after 3, 7 and 12 days	93
Table 8:	Available P concentration of PB medium inoculated with PSF and supplemented with TCP and RP at 28° C after 3, 7 and 12 days	96
Table 9:	Concentration and absorbance of the phosphate standards	98
Table 10:	Acid and alkaline phosphatases activity of PSF on PB medium supplemented with TCP at 28 ⁰ C after 7 days	100
Table 11:	Phosphatases activity of PSF isolates on PB medium supplemented with different phosphorus sources at 28 ⁰ C after 7 days	102
Table 12:	Concentration and absorbance of the <i>p</i> -nitrophenyl phosphate standards	104

Table 13:	Percentage of vero dead cells of the selected PSF	109
Table 14:	Organic acids produced by PSF on PB medium supplemented with TCP after 7 days of incubation	113
Table 15:	<i>In vitro</i> antagonistic activity of the selected PSF against each other	117
Table 16:	Some mechanical, physical and chemical properties of experimental soil	119
Table 17:	Effect of phosphate solubilizing fungi on some growth parameters of maize after 45 days of sowing	121
Table 18:	Effect of phosphate solubilizing fungi on some growth parameters of maize after 90 days of sowing	125
Table 19:	Effect of phosphate solubilizing fungi on some growth parameters of maize after 120 days of sowing	126

Table 20:	Effect of phosphate solubilizing fungi on some yield parameters of maize after 120 days of	
	sowing	133
Table 21:	pH change of rhizosphere soil of maize plants	
	treated with PSF after 45, 90 and 120 days of sowing	137
Table 22:	Effect of PSF on P availability in soil amended with RP after 45, 90 and 120 days	140
Table 23:	FDA activities of the selected PSF in soil after 45, 90 and 120 days	144
Table 24:	Concentration and absorbance of the Fluorescein standards	145
Table 25:	Mold fungi isolated from rhizosphere of maize plants treated with the selected PSF after 45, 90	
	and 120 days of sowing	147