Ain Shams University Faculty of Science Microbiology Department

Isolation and Genotyping characterization of Group A rotavirus among Children with Severe diarrhea

By

Sarah El-Said Ahmed Hashem (M.SC. in Microbiology-2005)

Thesis Submitted for the requirement of

> PhD degree in Microbiology

Microbiology Department of Faculty of Science Ain Shams University

Ain Shams University Faculty of Science Microbiology Department

Isolation and Genotyping characterization of Group A rotavirus among Children with Severe diarrhea

Thesis Submitted for Philosophy Doctor degree in Microbiology

BY

Sarah El-Said Ahmed Hashem

M.Sc in Microbiology-2005

Under the Supervision of

Dr. Sahar Hafez Shoman Ass. Prof. of microbiology Department of microbiology, Fac. of Sci.Ain Shams University

Dr. Aly Fahmy Mohammed Head of Rabies vaccine research unit VACSERA

Dr. Motaz Fouad Abd El-Gany Enteric vaccines Development and production Center Director, VACSERA

Approval Sheet

Title of thesis: Isolation and Genotyping characterization of Group A rotavirus among Children with Severe diarrhea

Degree: PhD degree in Microbiology

Name of Student: Sarah El-Said Ahmed Hashem

This thesis for PhD Degree has been approved by

Dr. Sahar Hafez Shoman Ass. Prof. of microbiology Department of microbiology, Fac. of Sci.Ain Shams University

Dr. Aly Fahmy Mohammed Head of Rabies vaccine research unit VACSERA

Dr. Motaz Fouad Abd El-Gany Enteric vaccines Development and production Center Director, VACSERA

Date of examination: / /2012

List of Abbreviations

.

A:	Adenine
A^0 :	Angstrom
AMP:	Adenosine monophosphate
Bp:	Base pairs
C:	Cytosine
cDNA:	Complimentary DNA
CPE:	Cytopathogenic effect
C ⁰ :	Centigrade
DEPC:	Diethyl pyrocarbonate
EMEM:	Eagle Minimum essential medium
DNA:	Deoxyribonucleic acid
dNTPs:	Deoxyribonucleotide triphosphates
dsRNA:	Double strand RNA
EDTA:	Ethylenediamine tetra acetic acid
EGTA:	Ethylene glycol tetraacetic acid
EIA:	Enzyme Immuno Assay
ELISA:	Enzyme Linked Immunosorbent Assay
ER:	Endoplasmic Reticulum
EM:	Electron Microscope
EPI:	Expanded Program for Immunization
FBS:	Foetal Bovine Serum
G:	Guanine
GAVI:	Global Alliance for Vaccines and Immunization
gm:	gram
HIV:	Human immunodeficiency virus
ICC-RT-PCR:	Integrated cell culture RT-PCR
MA104:	Monkey African green kidney
	• • •

а

Messenger RNA
milliliter
Millimole
Monoclonal antibodies
Micro liter
Nano-meter
Non-structural protein
Nucleotide
Open Reading Frame
Phosphate buffer saline
Polyacrylamide gel electrophoresis
picomole
Polymerase Chain Reaction
Ribonucleic acid
Reverese transcription-
Polymerase chain reaction
Rotavirus
Simian rotavirus
Thamine
Tris-Acetate-EDTA
Unit
United State
Protein (protease sensitive protein)
Protein (glucose sensitive protein)
Weight/Volume
World Health Organization

•

0

b

• •

• •

•

•

• •

•

List of Contents

•

D

O

C

•

•

•

0

•

•

•

•

•

0

•

•

•

•

•

•

•

0

•

Chapt	ter I:	INTRODUCTION	1
Chapt	ter II:	REVIEW OF LITERATURE	6
1.1	Rotavir	us history	6
1.2	Rotavir	us classification	10
1.3	Rotavir	us structure	13
	1.3.1	Viral proteins	17
	1.3.2	Genome structure	22
1.4	Rotavi	rus Replication	24
1.5	Rotavi	rus Physiochemical properties	31
1.6	Rotavi	rus Transmission	36
1.7	Pathog	enesis and Pathology	39
	1.7.1	Manifestation of rotavirus infection	40
	1.7.2	Pathology of rotavirus-infected cells	41
1.8	Epiden	niology	
	1.8.1	Morbidity and Mortality	48
1.9	Distrib	ution	
	1.9.1	Geographical distribution	51
	1.9.2	Seasonal pattern	52
	1.9.3	Age, Sex, Race, and Socioeconomic Status-	55
1.10) Prever	ntion and Control	57
1.11	Rotavi	irus Detection	
	1.11.	1 Electron Microscopy	61
	1.11.	2 Enzyme Linked immunosorbent assays-	62
	1.11.	3 Latex agglutination	63
	1.11.	4 Polyacrylamide Gel Electrophoresis	64
	1.11.	5 RT-PCR	65
	1.11.	6 Nucleic acid hybridization	65

С

 Chapter III: MATERIALS AND METHODS 1- Rotavirus detection using Latex assay 2- Rotavirus detection by ELISA 3- Isolation and cultivation of rotavirus
 Rotavirus detection using Latex assay Rotavirus detection by ELISA Isolation and cultivation of rotavirus
 2- Rotavirus detection by ELISA
 3- Isolation and cultivation of rotavirus
 4- RNA extraction using Trizol 5- RNA extraction using viral RNA Miniprep kit 6- Rotavirus detection by integrated cell culture-RT-PCR(ICC-RT-PCR) 7- Determination of VP7 genotype using RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS
 5- RNA extraction using viral RNA Miniprep kit 6- Rotavirus detection by integrated cell culture-RT-PCR(ICC-RT-PCR) 7- Determination of VP7 genotype using RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS 1- Identification of rotavirus in clinical and
 6- Rotavirus detection by integrated cell culture-RT-PCR(ICC-RT-PCR) 7- Determination of VP7 genotype using RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS
 cell culture-RT-PCR(ICC-RT-PCR) 7- Determination of VP7 genotype using RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS 1- Identification of rotavirus in clinical and
 7- Determination of VP7 genotype using RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS 1- Identification of rotavirus in clinical and
RT-PCR amplification 8- Nucleotide sequence determination Chapter IV: RESULTS 1- Identification of rotavirus in clinical and
 8- Nucleotide sequence determination Chapter IV: RESULTS 1- Identification of rotavirus in clinical and
Chapter IV: RESULTS
1- Identification of rotavirus in clinical and
laboratory samples
2- Area distribution of rotavirus infection
3- Distribution of age and gender
4- Seasonal pattern of rotavirus infection
5- Detection of infectious rotavirus by ICC-RT-PCR
6- Nucleotide sequence analysis
7- Phylogenetic analysis of VP7 gene
Chapter V: DISCUSSION
Chapter VI: SUMMARY
EFERENCES

•

• 🖸

• •

•

• • • •

• •

List of Tables

Table A:	: VP7 consensus oligonucleotide primers	88
Table B:	G-type specific oligonucleotide primers	92
Table 1:	Comparison of Latex Agglutination with Enzyme Immunoassay for detection of rotavirus in fecal samples	99
Table 2:	Age distribution of rotavirus infection in collected samples	102
Table 3:	Monthly distribution of rotavirus infections among infants and children with acute gastroenteritis during May 2009 to April 2010	104
Table 4:	Distribution of group A rotavirus G genotypes among infants and children with diarrhea in three governorates of Egypt between May 2009 and April 2010	110

List of Figures

Figure A: 3-dimenshion structure of rotavirus	17
Figure B: Genome and coding assignment of rotavirus	18
Figure C: Major features of the rotavirus replication cycle	31
Figure D: Electron Microscopy (EM) of (A) normal villi. (B) EM of villi after rotavirus infection	42
Figure E: Electron microscopy (negative stain) of rotavirus	62
Figure 1: Percentage of +ve and –ve specimens by using Latex Agglutination and Enzyme Immunoassay for detection of rotavirus in fecal Specimens	99
Figure 2: Age distribution of rotavirus infection among patients less than 5 years of age from May 2009 through April 2010	102
Figure 3: Seasonal pattern of rotavirus gastroenteritis among infants and children with acute gastroenteritis during May 2009 to April 2010	105
Figure 4: Agarose gel electrophoresis of RT-PCR products show M (100bp molecular weight marker), lane 1, 2, 3, 4, 6, 8 and 9 (1062bp full-length VP7 RT-PCR product), Lane 10, 11 negative controls)	106

Figure 5: Agarose gel electrophoresis showing amplicon sizes for the different G-types, Lane M (100bp molecular	
weight marker), Lane 1, 2,4,5,6 (G1: 749bp),	
Lane 3 mixed infection of (G1:749bp, G9: 306bp,	
and G4: 583bp), Lane 7 (G9: 306bp) 10	8
Figure 6: Agarose gel electrophoresis showing amplicon sizes	
for the different G-types, Lane M (100bp molecular weight marker). Lane 1 and 5 (G3: 374bp).	
Lane 2, 4 (G4: 583bp), lane 3 (G9: 306) 10	19
Figure 7: Distribution of different G-types in collected samples	
from May 2009 to April 2010 11	10
Figure 8: (A) Nucleotide sequence of VP7 gene of G1 genotype,	
(B) Sequencing Chromatogram of VP7 geneof G1 genotype 11	.1
Figure 0: (A) Nucleotide sequence of VP7 gene of C0 geneture	
(B) Sequencing Chromatogram of VP7 gene	
of G9 genotype 11	.2
Figure 10: (A) Nucleotide sequence of VP7 gene of G3 genotype,	
(B) Sequencing Chromatogram of VP7 gene	
of G3 genotype 11	3
Figure 11 : (A) Nucleotide sequence of VP7 gene of G4	
of VP7 gene of G4 genotype 114	

•

•

C

D

Figure 12: Phylogenetic analysis of the nucleotide sequences of VP7 gene of G1 Rotavirus genotype isolated from Egypt and selected international G1 genotype	117
Figure 13: Phylogenetic analysis of the nucleotide sequences of VP7 gene of G3 Rotavirus strain isolated from Egypt and selected international G3 genotype	119
Figure 14: Phylogenetic analysis of the nucleotide sequences of VP7 gene of G4 Rotavirus genotype isolated from Egypt and selected international G4 genotype	121
Figure 15: Phylogenetic analysis of the nucleotide sequences of VP7 gene of G9 Rotavirus genotype isolated from Egypt and selected international G9 genotype	123

Acknowledgements

I am thankful to a number of people who have provided me with enormous support, help and direction throughout this PhD journey. I am appreciative of my principal supervisor Dr. Sahar Shoman, whose valuable support and guidance have given me the courage to meet the challenges and achieve my goal. Thank you for giving me the opportunity to explore the fascinating world of rotavirus.

Special thanks to my co supervisor Dr. Aly Fahmy, whose advice in the technical side of research have been so valuable.

Finally, thank you to all my colleagues and friends within the Egyvac Company for being so supportive and helpful especially Dr. Mohamed Abdo, Dr. Eman Fargal who have given hand during the progress of this study.

I express my love and appreciation to my wonderful family. Thank you for being so supportive and patient. And big thanks to my father for his support, without which this thesis would not have seen the light.

<u>Chapter I</u>

Introduction

Diarrheal disease kills 1.8 million children <5 years of age annually (WHO, 2009). It is the fourth most common cause of death and accounts for 16% of all deaths in this age group (Bryce et al., 2005, Parashar et al., 2006). Rotavirus is the most common agent responsible for severe diarrheal disease (Glass and Parashar, 2006), causing 0.6 million deaths, 2.4 million hospitalizations, 24 million outpatient visits, and 114 million episodes of diarrhea per annum (Glass et al., 2006). Rotavirus was first identified as an important etiological agent in childhood diarrhea in 1973 (Bishop et al., 1973). Two new safe and effective vaccines have been widely licensed internationally. This holds great promise to decrease the mortality and morbidity associated with diarrheal disease in developing countries (Glass and Parashar, 2006). The 2 new internationally licensed vaccines, Rotarix (Glaxo- SmithKline Biologicals) and RotaTeq (Merck), underwent 2 of the largest prelicensure efficacy and safety trials (Ruiz-Palacios et al., 2006, Vesikari et al., 2006). Rotarix was first licensed in December 2004 in Mexico and in February 2006 in the European Union, and RotaTeq was approved by the US Food and Drug Administration in February 2006. Rotarix attained pregualification status from the World Health Organization (WHO) in February 2007, and RotaTeq did so in October 2008. The GAVI Alliance has approved vaccine purchase since 2008 in Latin America and Europe, where the vaccines have been shown to be efficacious in randomized controlled clinical trials (*Ruiz-*Palacios et al., 2006). The WHO Strategic Advisory Group of Experts met in April 2009 and reviewed the data from efficacy studies conducted in Africa and has recommended the universal inclusion of rotavirus vaccines in national immunization programs (WHO, 2009).

Rotavirus infection is of special significance in developing countries where they constitute a major cause of mortality among the young children. Although diarrheal diseases are not a prominent cause of mortality in infants and young children in developed countries, the toll from diarrheal disease in developing countries is staggering. Due to the lack of proper disease management and/or the unavailability of health care facilities in the developing world, rotavirus kills over half a million infants a year, about one child each minute (*Newsrx*, 2006).

Rotavirus infection causes ~527,000 deaths per year worldwide; however, the large proportion of this mortality occurs in the lowest-income countries, and almost half (~230,000) of all deaths worldwide are estimated to occur in Africa (*Parashar et al., 2006, WHO, 2009*). However, only very limited direct data on rotavirus disease burden are available from sub-Saharan Africa to validate these estimates (*Molbak et al., 2000*).

Furthermore, diarrheal illnesses consistently rank as one of the top six causes of all deaths, one of the top three causes of death from an infectious disease (*Murray and Lopez, 1997*).