Sensitization To Aeroallergens In Patients With Chronic Urticaria Without Allergic Respiratory Symptoms

Thesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Mayada Moneer Mahmoud EL Khodeery M.B.B.CH

Under Supervision Of

Prof. Dr./ Maged Refaat

Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Dr./ Eman Nagib Ossman

Assistant Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Dr./ Mohmed Nazmy Farris

Lecturer of Internal Medinine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2009

Contents

Page

List of abbreviation	I
List of graphs	III
List of figures	
List of tables	
Introduction	1
Aim of the work	
Review of literatures	
I. Allergic diseases	3
II. Chronic urticaria	
III. Inhaled allergens	
Patients and methods	112
Results	122
Discussion	145
Summary	
Conclusion and recommendations	161
References	
Arabic summary	

Acknowledgement

ш

|| || ||

|| || ||

|| || ||

11 11

|| || ||

|| || ||

...

|| || ||

|| || ||

|| || ||

|| || ||

...

п

I humbly submit my sincere gratitude to Allah, our creator who has guided me to every success I had in my life.

Special gratitude is offered to *Prof. Dr./ Maged Mohamed Refaat,* Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, for his support constructive criticism, generous help and encouragement.

Sincere appreciation is extended to *Dr./ Eman Nagib Osman*, Assistant Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University.

Special recognition and sincere thanks to *Dr./ Mohamed Nazmy Faris*, Lecturer of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, for giving personal assistance, encouragement and valuable advice.

Special gratitude is offered to *Dr. Mohamed Youssef*, for being extremely helpful to make this work succeed.

List of Abbreviations

Ach E	: Acetylcholinestrease
AHR	: Airway hyperresponsiveness
APC	: Antigen presenting cells
BHR	: Bronchial hyper-responsiveness
C1INH	: C1 inhibitor
CLD	: Chronic liver disease
CRF	: Chronic renal failure
CU	: Chronic urticaria
DM	: Diabetes
DPU	: Delayed pressure urticaria
EIA	: Exercise induced anaphylaxis
FSU	: Fixed solar urticaria
HAE	: Hereditary angioedema
HD	: House dust
HTN	: Hypertension
IgE	: Immunoglobulin E
IL	: Interlukin
INF	: Interferon
ISHD	: Ischemic heart disease
IVIG	: Intravenous immunoglobulins
МСТ	: Mast cell tyrptase
MCTC	: Mast cell tyrptase chymase
MM	: Mixed molds
МР	: Mixed pollens

List of Abbreviations (Cont.)

Ν	: Number
PG	: Prostaglandin
PIT	: Phagocytic inhibition test
Pt	: Patient
RASP	: Radio-allergiosorbant procedure
RAST	: Radio-allergiosorbant test
SCIT	: Subcutaneous immunotherapy
SD	: Standard deviation
SLIT	: Sublingual immunotherapy
SPT	: Skin prick test
Tcyt	: T cytotoxic
TGF-β	: Transforming growth factor $-\beta$
Th1	: T helper cells 1
Th2	: T helper cells 2
TNF	: Tumor necrosis factor
Treg	: T regulatory
TSLP	: Thymic stimulation lymphopoietin
UV	: Urticarial vasculitis
UVB	: Ultraviolet B waves
VEGF	: Vascular Endothelium Growth factor

List of Tables

Page Table 1: Classification of urticaria. 43 Table 2: Comparison between skin test and blood tests......70 Table 5: Master sheets (Study group). 124 Table 6: Master sheet (control group). 127 Table 7: Shows the number of individuals tested positive only Table 8: Comparison between both group (study & control) as regards general data (n=30).....129 Table 9: Shows distribution of study group as regards disease Table 10: Compare the study and control as regards sensitization to single or multiple inhaled allergens Table 11: Prevalence of the allergens in study group Table 12: Distribution of allergens in control group according Table 13: Distribution of studied cases according to skin test Table 16: Distribution of studied cases as regards results total Table 17: Comparison between SPT results versus PIT in relation to specific IgE among studied cases140 Table 18: Comparison between USS score levels before and Table 19: Comparison between total IgE level before and after immunotherapy among the studied......143 Table 20: Comparison between specific IgE levels of mite before and after immunotherapy among the studied

List of Figures

Page 1

Figure 1: Response of mast cells on exposure to allergens	7
Figure 2: Eosinophils activation and mediators release	2
Figure 3: Basophils Netter's Essential Histology1	
Figure 4: Eosinophils Netter's Essential Histology 1	
Figure 5: Mast cells Netter's Essential Histology immune cells	
Figure 6: Regulation of lung eosinophil responses	2
Figure 7: Molecular and cellular control of the major atopic diseases	3
Figure 8: Different urticarial lesion	7
Figure 9: Angiodema	37
Figure 10: Dermographism	7
Figure 11: Solar urticaria5	4
Figure 12: Cholinergic urticaria5	
Figure 13: Diagnostic approch in patients of urticaria5	
Figure 14: Skin test on the forearm in our allergy clinic	51
Figure 15: Patch skin test	5
Figure 16: The binding of serum IgE to the high affinity IgE receptor on	
basophil granulocytes and mast cells	2
Figure 17: Chimeric antibody made of both mouse and human	
antibody9	
Figure 18: Dust mites	
Figure 19: Dust mites by light and electron microscopy10	13
Figure 20: Pscoptera (book louse)	
Figure 21: Domestic coacrach	
Figure 22: Asprigellous	
Figure 23: Penicillium	
Figure 24: Rhizopus	
Figure 25: Mucor	18
Figure 26: Birch pollen tree	
Figure 27: Birch pollen under light and electron microscopy 11	0

List of Graphs

	Page
Graph 1: Causes of choronic urticaria	123
Graph 2: Number of individuals tested positive in both study and control group	128
Graph 3: Distribution of the patients as regard disease duration	130
Graph 4: Comparison between study and control group as regards number of allergens detected by skin test	132
Graph 5: Prevalence of allergens in study group according to skin test results	134
Graph 6: Distribution of allergens in control group according to skin test results	135
Graph 7: Distribution of studied cases according to skin test results	136
Graph 8: Prevalence of allergens according to PIT results	137
Graph 9: Distribution of studied cases as regards results total IgE (n=30)	139
Graph 10: Comparison between USS score levels before and after immunotherapy among studied cases: (n=12)	142
Graph 11: Comparison between total IgE level before and after immunotherapy among the studied	143
Graph 12: Comparison between specific IgE levels of mite before and after immunotherapy among the studied cases	144

Introduction

The etiology of chronic urticaria and angioedema remains uncertain in most of patients. There are several agents and factors including medications, foods, food additives, infections contact ants, physical factors and autoimmunity that are implicated in provoking urticaria symptoms.^[227]

In addition, the possible role of inhalant or aeroallergens has been considered in few reports,^[228] further more, urticaria as a sole clinical manifestation in inhalants allergy sensitive patients is unusual (airborne urticaria).

A possible association of house dust mite sensitivity with chronic urticaria was described by **Mahesh et al.**^[233]. Also, urticaria was statistically significantly associated with sensitization to pollens ^[252].

Stokli and Bricher^[287] described patients with urticaria provoked by tobacco inhalation. The same observation was described by **Heudorf et al.**^[288] as a significant association between dermal symptoms and passive smoking in children was found.

In practice, skin test positive to aeroallergens is found in some cases of chronic urticaria, this can be due to concomitant respiratory allergy.^[81]

Aim of the Work

The aim of this study is to investigate the possible role of aeroallergens in provoking chronic urticaria in patients without allergic respiratory diseases.

I - Allergic diseases

The term (allergy) was introduced in 1906 by Von Pirquet, who recognized that in both protective immunity and hypersensitivity reactions, the term (Atopy) (from the greek atopos, meaning out of place) is often used to describe IgE mediated diseases.

The clinical symptoms of allergy are caused by cellular (IgE-triggered) responses to an allergen. Effector cells of allergy include eosinophil and basophil granulocytes, as well as tissue mast cells. Growth and accumulation, as well as IgE-dependent and independent functions of these cells are regulated by distinct proteohormones and peptides.^[1]

Cells Involved in Allergic Responses:

Basophil leukocytes and tissue cells mast are inflammatory cells that are found in virtually all human tissues. They appear to be involved in the pathogenesis of such allergic diseases as allergic rhinitis, bronchial asthma, anaphylaxis, dermatitis, chronic atopic and contact urticaria. and hypersensitivity pneumonitis. By releasing a variety of chemical mediators, they could also play a role in the pathophysiology of a wide range of inflammatory disorders of the joints, and of intestine, lung, coronary, and myocardial diseases.^[2]

Basophils and mast cells are effecter cells in allergen/IgE-mediated immune responses. They induce type 1

immediate immune response in airway or other organ, resulting in bronchial asthma and other allergic diseases.However, they also play a critical role in host defense against infection with helminthes.^[2]

Upon linkage of FcepsilonRI with a complex of allergen and IgE, basophils and mast cells release a large amount of Th2 cytokines and chemical mediators. Therefore these responses are "acquired allergic responses" and induce allergic diseases, such as bronchial asthma.^[3]

Although these two cell types are similar in several aspects, striking differences have also been observed. Moreover, human mast cells from different anatomical sites and within an individual tissue synthesize different mediators and have different release mechanisms.^[2]

<u>Mast Cells:</u>

Mast cell (or mastocyte) is a resident cell of connective tissue that contains many granules rich in histamine and heparin.^[4]

Mast cells were first described by Paul Ehrlich in his 1878 doctoral thesis on the basis of their unique staining characteristics and large granules. These granules also led him to the mistaken belief that they existed to nourish the surrounding tissue, and he named them "Mastzellen" (from the Ancient Greek *masto*, "I feed").^[4]

Mast cells are very close to basophil granulocytes (a class of white blood cells) in blood; the similarities between

mast cells and basophils has led many to speculate that mast cells are basophils that have "homed in" on tissues.^[4]

However, current evidence suggests that they are generated by different precursor cells in the bone marrow. Nevertheless, both mast cells and basophils are thought to originate from bone marrow precursors expressing the CD34 molecule. The basophil leaves the bone marrow already mature, whereas the mast cell circulates in an immature form, only maturing once in a tissue site. The tissue site an immature mast cell chooses to settle in probably determines its precise characteristics.^[4]

Two types of mast cells are recognized, those from connective tissue and mucosal mast cells. The activities of the latter are dependent on T-cells.^[5] Immunocytochemical studies have shown the presence within the tissues of two mast cell phenotypes distinguishable by their neutral protease content, the MC T(mast cell typtase) phenotype containing only tryptase and the MC TC MC T(mast cell typtase chymase) phenotype containing both tryptase and chymase.^[6]

IgE Initially, these respective subtypes were suggested to be the equivalents of the "mucosal" and "connective tissue" previously described in experimental animals. However, it is now realized that variable amounts of both mast cell subtypes are present within any given tissue; their relative abundance changes with disease (e.g., in allergy or fibrosis).^[6] However, some rules are becoming apparant, Thus MC T phenotypes appear to be "immune system–related" mast cells with a primary role in host defense, whereas MC TC phenotypes appear to be "non-immune system–related" mast cells with functions in angiogenesis and tissue remodeling rather than immunologic protection. However, it should be remembered that both phenotypes express $Fc \in RI$ and may therefore participate fully in IgE-dependent allergic or parasitic reactions.^[6]

The production of a wide range of cytokines by mast cells in response to activation by allergen places the mast cell in the center of the allergic inflammatory response.^[7] These cytokines may lead to eosinophil, basophil, and T cell recruitment. Coordinated production of IL-4 and IL-5 by TH2 helper cells enhanced IgE responsivity, thus perpetuating the allergic inflammatory response.^[7]

In the asthmatic airways, mast cells may stimulate the release of IL-6 and IL-8 from fibroblasts through the release of various pre-formed and newly generated mediators, and contribute to processes of inflammation and tissue remodeling.^[8] Mast cells play a role in Th polarization and that mast cell degranulation leads to more Th2 and less Th1 responses.^[9]