
 

 

 

 

 

 

Ain Shams University 

Faculty of Engineering 

Structural Engineering Department 

 
  

BUCKLING BEHAVIOR AND BENDING 

STRENGTH OF SINGLY-SYMMETRIC 

OVERHANGING I-BEAMS 
 

By 

Diana Omar Mohammad Abdul Hameed 
B.Sc. Civil Engineering 

Ain Shams University 

 

A Thesis 

Submitted in Partial Fulfillment for the Requirements  

of the Degree of Master of Science 

 in Civil Engineering (Structures) 

 

Supervised By 

   

Prof. Dr. 

Abdelrahim Khalil Dessouki 
Professor of Steel Structures 

Structural Engineering Department 

Ain Shams University 
 

Dr. 

Abdel-Rahim Badawy Abdel-Rahim 
Associate Professor 

Structural Engineering Department 

Ain Shams University 

Cairo 2013 

 

  



 

i 
 

 
Examiners Committee: 
 
 
1. Prof. Dr. Adel Helmy Salem                    (...........................) 

Professor of Steel Structures 
Faculty of Engineering 
Ain Shams University 

 
2. Prof. Dr. Nabil Sayed Mahmoud              (...........................) 

Professor of Steel Structures 
Faculty of Engineering 
Mansoura University 
 

3. Prof. Dr. Abdelrahim Khalil Dessouki     (...........................) 
Professor of Steel Structures 
Faculty of Engineering 
Ain Shams University 
 

4. Dr. Abdel-Rehim Badawy Abdel-Rehim  (...........................) 
Associate Professor of Structural Engineering 
Faculty of Engneering 
Ain Shams University 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

ii 
 

STATEMENT 
 

This dissertation is submitted to Ain Shams University for the 

degree of Master of Science in Structural Engineering. 

The work included in this thesis was carried out by the author 

in the Department of Structural Engineering, Ain Shams 

University, from March 2007 to April 2013. 

No part of this thesis has been submitted for a degree or a 

qualification at any other University or Institute.       

  

Date: 

 

Signature: 

 

Name: Diana Omar Mohammad Abdul Hameed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

iii 
 

ACKNOWLEDGEMENTS 
 
First and foremost, praise and thanks to Almighty Allah, the most 

gracious, the most merciful, and peace be upon his prophet. 

The author would like to express her gratitude and appreciation to 

her supervisor, Prof. Dr. Abdelrahim Khalil Dessouki for his 

invaluable guidance, support, and encouragement. 

She also greatly appreciates the help, guidance, and support 

provided by Dr. Abdel Rahim Badawy throughout all stages of 

research, especially lately as he insisted to follow and complete the 

thesis perfectly. 

 

The author would also like to express her gratitude to all the staff 

of steel structures in the department for their great feelings and 

support. 

 

Finally, she would like to express her deepest gratitude and 

appreciation to her beloved father, mother, brothers and sister for 

their continuous support, encouragement and guidance. 

 
 
 
 
 
 
 
 
 
 
 
 



 

iv 
 

ABSTRACT 
 
The design of overhanging singly-symmetric I-beams is not 

sufficiently covered in the current standards and specifications. 

The buckling length coefficients specified in the current standards 

and specifications was firstly defined by Nethercot, 1973 and 

covers only doubly symmetric I-sections. In this research program, 

a theoretical analysis is performed to study the elastic and inelastic 

lateral torsional buckling behavior of singly-symmetric I-sections 

bent about their major axes.  

A finite element model is developed to simulate the behavior 

of such beams. To include the effect of large displacement on 

their behavior, a nonlinear geometric analysis is performed. A 

multi-linear elasto-plastic response of the material is considered. 

The Newton-Raphson iterative method is used to perform the 

nonlinear analysis and the load is applied in increments. The 

results from the developed finite element model showed a good 

agreement with past experimental results. Once the validity of this 

model is verified, the model is used to conduct parametric studies 

to investigate the effect of mono-symmetric ratio, the un-

supported length to the radius of gyration ratio and different 

boundary conditions on the ultimate moment capacity of the 

overhanging beams. In the theoretical program, the study is 

divided into two main groups, each group investigating 

overhanging beams with different boundary conditions and 

loading positions. The first group is the overhanging singly-

symmetric monorail beams subjected to concentrated load at the 
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bottom flange of the cantilever tip, while the second group is 

overhanging singly-symmetric floor beams subjected to 

concentrated point support at the top flange of cantilever tip. The 

overhanging beams have a constant back-span length while the 

overhanging parts have different lengths. In case of singly-

symmetric overhanging monorail beams, the design of such beams 

against global buckling is complex due to the nature of loading 

and poor boundary conditions. The monorail has lateral restraints 

only at the top flange and therefore has no apparent torsional 

restraint. In this study, the cantilever tip has two cases of 

boundary conditions: top flange laterally restrained, and free tip. 

In case of singly-symmetric overhanging floor beams, the tip of 

the cantilever had four cases of boundary conditions: top and 

bottom flanges laterally restrained, top flange only laterally 

restrained, bottom flange only laterally restrained, and free 

cantilever tip. The root support was studied under different 

boundary conditions in both overhanging beam types and the 

effect of adding stiffener plate with variable depth at root support 

was also investigated. The cross section considered in the study 

has different degrees of mono-symmetry. The end support was 

fully restrained at top flange while bottom flange was horizontally 

restrained. 

A design model based on the results developed from the 

finite element analysis was proposed. The ultimate moment 

capacities of such beams computed according to many standards 

and specifications as well as those computed using the proposed 
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design model were compared to those obtained from the finite 

element model in this study. The comparison showed that the 

proposed design model results had a good agreement with the 

finite element model results in this study. The ultimate moment 

capacities obtained using the developed model shows good 

agreement when compared to the FEM results. The comparison 

showed that the ultimate moment capacities computed according 

to the AISC-LRFD Specifications (2010) and BS5950-1:2000, 

varied from conservative to un-conservative, depending on the 

overhanging length, degree of mono-symmetry and load location 

along the beam depth. 

 

Key Words: Structural Engineering; Steel; Stability; Lateral 

Torsional Buckling; Singly-symmetric I-Section; Overhanging 

Beam. 
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