Assessment of Simulated Mandibular Condylar Erosions in Cone Beam CT Imaged with Two Different Voxel Sizes: A Diagnostic Accuracy Study

Thesis Submitted to the Faculty of Dentistry, Cairo University in partial fulfillment of the requirement for Master Degree in Oral and Maxillofacial Radiology

Yasmin Aboulmaaty Mogahed

B.D.S. 2010

<u>Major area of interest</u>: Role of Oral Radiology in Diagnosis of Oral Diseases. <u>Minor area of interest</u>: Evaluating validity, effectiveness, and diagnostic accuracy of high versus normal CBCT protocols in evaluating mandibular condylar erosions

size.

Research Code: ORAD 8:2:13

Faculty of Dentistry Medicine Cairo University 2017

Supervisors

Dr. Noha Saleh M. Abu-Taleb

Associate Professor of Oral and Maxillofacial Radiology

Faculty of Dentistry

Cairo University

Dr. Hany Mahmoud Omar

Professor of Oral and Maxillofacial Radiology

Faculty of Dentistry

Cairo University

Judgment committee

Dr. Mona Aboul fotouh

Professor of Oral Radiology Faculty of Dentistry Ain Shams University

Dr. Dina M. El Beshlawy

Associate Professor of Oral and Maxillofacial Radiology Faculty of Dentistry Cairo University

Dr. Noha Saleh M. Abu-Taleb

Associate Professor of Oral and Maxillofacial Radiology Faculty of Dentistry

Cairo University

Dr. Hany Mahmoud Omar

Professor of Oral and Maxillofacial Radiology Faculty of Dentistry Cairo University

Acknowledgement

Before all and above all, thanks to GOD for everything.

I would like to thank **Dr. Noha Saleh Abu-Taleb** Associate Professor of Oral and Maxillofacial Radiology, Faculty of Dentistry, Cairo University for her generous work and cooperation. It was a great honor to work under her meticulous supervision.

1 would like to thank **Dr. Hany M.Omar** Professor of Oral and Maxillofacial Radiology, Faculty of Dentistry, Cairo University for his kindness and valuable guidance. It was honor to work under his supervision.

Special thanks to my friends Eman **Mamdouh**, **Maha Samy**, **Hanan Omar** for their precious advices and emotional support.

1 would like to thank all my colleagues and staff members of the Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University for their support throughout the study. Last but not least I would like to thank my dear husband **Ayman Gad** for standing by my side in all hard times it was a really hard journey, but I will always remember that you are the treasure of the journey thank you for your unlimited support .

Dedication

This work is dedicated to

My sacrificing mother, my mother in law, the soul of my father

My sisters, my brother, my lovely and supportive husband

Ayman Gad

My lovely sons Malek & Ahmed

List of Contents

IN	TRODUCTION	1
R	EVIEW OF LITERATURE	4
•	Tempromandibular joint	
	TMJ Anatomy	4
	TMJ Disorders	9
	Imaging of TMJ erosions	11
•	Cone beam computed tomography	
	Introduction	14
	CBCT image production	14
	CBCT image quality	23
	Advantages of CBCT	28
	Limitations of CBCT	32
	Application of CBCT in dentistry	38
	CBCT in the assessment of condylar osseous defects	42
A	IM OF THE STUDY	49
Μ	ATERIAL AND METHODS	50
R	ESULTS	78
D	ISCUSSION	152
SI	UMMARY ANDCONCLUSION S	167
R	ECOMMENDATIONS	170
R	EFERENCES	171

APPENDICES	183
Appendix I	183
Appendix II	185
ARABIC SUMMARY	-1-

List of Tables

Table	Page
Table (1) The scan parameters of the CBCT protocols (KV, mA, Exposure	61
time, FOV and voxel size)	
Table (2) The mean, standard deviation, 95% upper and lower CI ranges of	78
the real measurements of all ranges of the defect diameter in the five	
condylar surfaces	
Table (3) The mean, standard deviation, 95% upper and lower CI ranges of	79
the real measurements of the diameters of the simulated defects in all the	
condylar surfaces	
Table (4): The mean, standard deviation, 95% upper and lower CI ranges of	80
the CBCT normal resolution protocol (voxel size: 0.4mm) measurements of	
all ranges of the defect diameter in the five condylar surfaces	
Table (5): The mean, standard deviation, 95% upper and lower CI ranges of	81
the CBCT normal resolution protocol (voxel size: 0.4mm) measurements of	
the diameters of the simulated defects in all the condylar surfaces	
Table (6): The mean, standard deviation, 95% upper and lower CI ranges of	82
the CBCT high resolution protocol (voxel size: 0.2mm) measurements of all	
ranges of the defect diameter in the five condylar surfaces	
Table (7): The mean, standard deviation, 95% upper and lower CI ranges of	83
the CBCT high resolution protocol (voxel size: 0.2mm) measurements of	
the diameters of the simulated defects in all the condylar surfaces	
Table (8): The mean, standard deviation, 95% upper and lower CI ranges of	84
the real measurements of all ranges of the defect depth in the five condylar	
surfaces	
Table (9): The mean, standard deviation, 95% upper and lower CI ranges of	85
the real measurements of the depths of the simulated defects in all the	
condylar surfaces	
Table (10): The mean, standard deviation, 95% upper and lower CI ranges	86
of the CBCT normal resolution protocol (voxel size: 0.4mm) measurements	
of all ranges of the defect depth in the five condylar surfaces	
Table (11): The mean, standard deviation, 95% upper and lower CI ranges	87
of the CBCT normal resolution protocol (voxel size: 0.4mm) measurements	
of the depths of the simulated defects in all the condylar surfaces	
Table (12): The mean, standard deviation, 95% upper and lower CI ranges	88
of the CBCT high resolution protocol (voxel size: 0.2mm) measurements of	
all ranges of the defect depth in the five condylar surfaces.	

Table (13): The mean, standard deviation, 95% upper and lower CI ranges	89
of the CBCT high resolution protocol (voxel size: 0.2mm) measurements	
of the depths of the simulated defects in all the condylar surfaces	
Table (14): False +ve and false -ve results of observer (1) in the detection	90
of simulated defects by CBCT normal resolution protocol (voxel size:	
0.4mm)	
Table (15): 95% confidence limits, lower limits and upper limits of	90
sensitivity, specificity, (PPV), (NPV) and diagnostic accuracy of observer	
(1) in the detection of simulated defects by CBCT normal resolution	
protocol (voxel size: 0.4mm)	
Table (16): False +ve and false -ve results of observer (1) in the detection	91
of simulated defects by CBCT high resolution protocol (voxel size: 0.2mm)	
Table (17): 95% confidence limits, lower limits and upper limits of	91
sensitivity, specificity, (PPV), (NPV) and diagnostic accuracy of observer	
(1) in the detection of simulated defects by CBCT high resolution protocol	
(voxel size: 0.2mm)	
Table (18): False +ve and false -ve results of observer (2) in the detection	92
of simulated defects by CBCT normal resolution protocol (voxel size:	
0.4mm)	
Table (19): 95% confidence limits, lower limits and upper limits of	92
sensitivity, specificity, (PPV), (NPV) and diagnostic accuracy of observer	
(2) in the detection of simulated defects by CBCT normal resolution	
protocol (voxel size: 0.4mm)	
Table (20): False +ve and false -ve results of observer (2) in the detection	93
of simulated defects by CBCT high resolution protocol (voxel size: 0.2mm)	
Table (21): 95% confidence limits, lower limits and upper limits of	93
sensitivity, specificity, (PPV), (NPV) and diagnostic accuracy of observer	
(2) in the detection of simulated defects by CBCT high resolution protocol	
(voxel size: 0.2mm)	
Table (22): Cross-tabulation of observer (1) results of the detection of	96
simulated defects by CBCT normal and high resolution protocols (voxel	
sizes: 0.4 and 0.2mm)	
Table (23): K value and percentage of observer (1) intra-observer agreement	96
on the detection of simulated defects by CBCT normal and high resolution	
protocols (voxel sizes: 0.4 and 0.2mm)	
Table (25): Cross-tabulation of observer (2) results of the detection of	97
simulated defects by CBCT normal and high resolution protocols (voxel	
sizes: 0.4 and 0.2mm)	

Table (25): K value and percentage of observer (2) intra-observer agreement on the detection of simulated defects by CBCT normal and high resolution protocols (voxel sizes: 0.4 and 0.2mm)	97
Table (26): Cross-tabulation of observer(1) and observer (2) results of the detection of simulated defects by CBCT normal resolution protocol (voxel sizes: 0.4 mm)	98
Table (27): K value and percentage of inter-observer agreement on the detection of simulated defects by CBCT normal resolution protocol (voxel sizes: 0.4 mm)	98
Table (28): Cross-tabulation of observer (1) and observer (2) results of the detection of simulated defects by CBCT high resolution protocol (voxel sizes: 0.2 mm)	99
Table (29): K value and percentage of inter-observer agreement on the detection of simulated defects by CBCT high resolution protocol (voxel sizes: 0.2 mm)	99
Table (30) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal resolution protocol (voxel size: 0.4mm) measurements of defect diameter range (0.8mm<1.2mm) in the five condylar surfaces	101
Table (31) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT high resolution protocol (voxel size: 0.2mm) measurements of defect diameter range (0.8mm<1.2mm) in the five condylar surfaces	103
Table (32) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements of defect diameter range (0.8mm<1.2mm)	105
Table (33) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal resolution protocol (voxel size: 0.4mm) measurements of defect diameter range (1.2 mm<1.6mm) in the five condylar surfaces	107
Table (34) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT high resolution protocol (voxel size: 0.2mm) measurements of defect diameter range (1.2 mm<1.6mm) in the five condylar surfaces	109

Table (35) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements of defect diameter range (1.2mm<1.6mm)	111
Table (36) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal resolution protocol (voxel size: 0.4mm) measurements of defect diameter range (1.6 mm \leq 2mm) in the five condylar surfaces	113
Table (37) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT high resolution protocol (voxel size: 0.2mm) measurements of defect diameter range (1.6 mm \leq 2mm) in the five condylar surfaces	115
Table (38) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements of defect diameter range (1.6mm \leq 2mm)	117
Table (39): The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements in all ranges of defect diameter	118
Table (40) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal resolution protocol (voxel size: 0.4mm) measurements of defect depth range (0.5 mm<1.5mm) in the five condylar surfaces	121
Table (41) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT high resolution protocol (voxel size: 0.2mm) measurements of defect depth range (0.5 mm<1.5mm) in the five condylar surfaces	123
Table (42) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements of defect depth range (0.5 mm<1.5mm)	125
Table (43) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal resolution protocol (voxel size: 0.4mm) measurements of defect depth range (1.5 mm<2.5mm) in the five condylar surfaces	127

Table (44) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT high resolution protocol (voxel size: 0.2mm) measurements of defect depth range (1.5 mm<2.5mm) in the five condylar surfaces	129
Table (45) : The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements of defect depth range (1.5 mm<2.5mm)	131
Table (46): The mean, standard deviation, 95% upper and lower CI ranges and P values of the comparison between real and CBCT normal and high resolution protocols' (voxel size: 0.4mm and 0.2mm) measurements in all ranges of defect depth	132
Table (47):The means, SD, mean difference, mean absolute difference, relative mean absolute difference DE, RDE and ICC results of error assessment of defects diameter measurements of all ranges using CBCT normal and high resolution protocols (voxel size: 0.4mm and 0.2mm)	136
Table (48):The means, SD, mean difference, mean absolute difference, relative mean absolute difference DE, RDE and ICC results of error assessment of defect depth measurements of all ranges using CBCT normal (voxel size:0.4mm) and high (voxel size:0.4mm) resolution protocols	137
Table (49): The means, standard deviations (SD), DE, RDE and ICC results of intra-observer reliability of defect diameter measurements using CBCT normal resolution protocol (voxel size:0.4mm)	144
Table (50): The means, standard deviations (SD), DE, RDE and ICC results of intra-observer reliability of defect diameter measurements using CBCT high resolution protocol (voxel size:0.2mm)	145
Table (51): The means, standard deviations (SD), DE, RDE and ICC results of inter-observer reliability of defect diameter measurements using CBCT normal resolution protocol (voxel size:0.4mm)	146
Table (52): The means, standard deviations (SD), DE, RDE and ICC results of inter-observer reliability of defect diameter measurements using CBCT high resolution protocol (voxel size:0.2mm)	147
Table (53): The means, standard deviations (SD), DE, RDE and ICC results of intra- observer reliability of defect depth measurements using CBCT normal resolution protocol (voxel size:0.4mm)	148

Table (54): The means, standard deviations (SD), DE, RDE and ICC results	149
of intra- observer reliability of defect depth measurements using CBCT	
high resolution protocol (voxel size:0.2mm)	
Table (55): The means, standard deviations (SD), DE, RDE and ICC results	150
of inter- observer reliability of defect depth measurements using CBCT	
normal resolution protocol (voxel size:0.4mm)	
Table (56): The means, standard deviations (SD), DE, RDE and ICC results	151
of inter- observer reliability of defect depth measurements using CBCT	
high resolution protocol (voxel size:0.2mm)	

List of Figures

Figure	Page
Fig (1): A diagram representing the TMJ anatomy.	5
Fig (2): Diagrams representing the muscles of the TMJ: temporalis, masseter, medial and lateral pterygoid muscles. Also shown are the other muscles associated with jaw function; mylohyoid, anterior and posterior digastric, and stylohyoid muscles.	5
Fig (3) A diagram representing the TMJ Disc and joint compartments.	6
Fig (4) A diagram representing a cross section through the mandibular condyle. The mandibular fibrocartilage covers the articular surface of the condyle . The thin subchondral bone. The medullary bone .	7
Fig (5) Different shapes of the mandibular condyle from lateral, posterior and superior views.	8
Fig (6) Condylar bone changes in degenerative TMJ diseases observed macroscopically. (A) Erosion with exposure to bone marrow. (B) Osteophyte. (C) Flattening of the condyle with the preservation of the cortical bone	10
Fig (7) Temporomandibular joint tomogram revealing mild erosions at the anterior aspect of the left condyle.	11
Fig (8) Temporomandibular joint tomogram revealing mild erosions at the anterior aspect of the left condyle.	12
Fig (9) MSCT (coronal plane) in osteoarthritis. The right TMJ reveals condylar erosions, osteophyte subchondral cyst and sclerosis.	13
Fig (10) A diagram representing the principle of CBCT. An X- ray source and opposing detector are rotating around the patient's jaw.	15