IMPROVEMENT OF PHYSICAL AND MICROBIOLOGICAL PROPERTIES OF SOIL THROUGH POLYMERS APPLICATION

By

SODAF AHMED AHMED AHMED KARMANY

B.Sc. Agric. Sci. (Biotechnology), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Agric. Microbioloy)

Department of Microbiology Faculty of Agriculture Ain Shams University

2017

Approval Sheet

IMPROVEMENT OF PHYSICAL AND MICROBIOLOGICAL PROPERTIES OF SOIL THROUGH POLYMERS APPLICATION

By

SODAF AHMED AHMED AHMED KARMANY

B.Sc. Agric. Sci. (Biotechnology), Ain Shams University, 2011

This thesis for M.Sc. degree has been approved by:

- Dr. Mohamad Fayez Fouad Ibrahim Prof. Emeritus of Microbiology, Faculty of Agriculture, Cairo University.
- Dr. Mohamed EL-Sayed El-Haddad Prof. Emeritus of Microbiology, Faculty of Agriculture, Ain Shams University.
- Dr. Enas Abd El-Tawab Hassan Prof. of Microbiology, Faculty of Agriculture, Ain Shams University.
- Dr. Abd El-Wahab Mohamed Abd El- Hafez Prof. Emeritus of Microbiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: / / 2017

IMPROVEMENT OF PHYSICAL AND MICROBIOLOGICAL PROPERTIES OF SOIL THROUGH POLYMERS APPLICATION

By

SODAF AHMED AHMED AHMED KARMANY

B.Sc. Agric. Sci. (Biotechnology), Ain Shams University, 2011

Under the supervision of:

Dr. Abd El-Wahab Mohamed Abd El- Hafez

Prof. Emeritus of Agric.Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Tarek Said El-Tayeb

Prof. of Agric. Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Enas Abd El-Tawab Hassan

Prof. of Agric. Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Sodaf Ahmed Ahmed Ahmed Karmany: Improvement of physical and microbiological properties of soil through polymer application. Unpublished M. Sc. Thesis, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, 2017.

In this study, five diversified types of extracellular polysaccharides (EPs) naturally produced by soil microbial cultures were used: xanthan from Xanthomonas isolates; dextran from Leuconostoc isolates; alginate from Azotobacter isolates; pullulan from Aureobasidium pullulans strains and curdlan from *Rhizobium* isolates. Isolation of different isolates of Xanthomonas, Leuconostoc and Azotobacter was performed on specific media from various samples while Aureobasidium pullulan and Rhizobium cultures were obtained from the unit of bio-fertilizers, Ain Shams Univ. The screening of potent cultures for each polymer was conducted based on their culture viscosities on specific productive media. Five isolates of Xanthomonas, four Leuconostoc isolates, four Azotobacter isolates, three strains of Aureobasidium pullulans and three Rhizobium isolates were cultured on different productive media to select the suitable medium for enhancing each polymer production. The biological activity of potent culture for each polymer was determined under optimal nutritional conditions which were found to be; modified med A5 with sucrose and, ammonium nitrate at 27C/N ratio for Xanthomonas Xc11. The highest production rate of dextran was obtained by Leuconostoc Lm24 on modified med B4 containing the original carbon and nitrogen sources but C/N ratio was modified to be 31.5. Modified med C2 was the best for Azotobacter Az 10 containing sodium citrate and original nitrogen source at modified C/N ratio of 9.68. Modified med D3 containing sucrose and original nitrogen source at C/N ratio of 63.69 was the optimal for Aureobasidium pullulans 2. Rhizobium R3 was grown in modified med E2 containing glucose and yeast extract at C/N ratio of 31.25 for the highest curdlan production. The produced polymers were used as soil conditioners for two soil types using different concentrations to evaluate their effects on soil structure under un-leaching and leaching processes.

The parameters of soil properties indicated significant differences between all bio-treatments and control (without polymer). The dextran showed the highest positive effect whereas curdlan and pullulan behaved as the least potent among the amended soils.

The effect of environmental factors together with using industrial byproducts as sole carbon source were examined on biopolymers production with *Xanthomonas* Xc11, *Leucnostoc* Lm24 and *Azotobacter* Az10 which produced the most effective biopolymers as soil conditioners. Glucose syrup as a carbon source exhibited the highest culture viscosities with all tested cultures compared to other byproducts.

The molecular analysis for the most efficient cultures revealed that they are *Xanothomonas campesteries*, *Leuconostoc mesenteroides* and *Azotobacter vinelandii*. The xanthan, dextran, and alginate were, produced under optimal nutritional and environmental conditions to characterize their chemical structure using ¹³CNMR and FTIR analysis. These biopolymers and the synthetic polymers (polyacrylamide, diaper polymer) were cheeked for their efficiency in enhancing the microbiological and physical properties of the used soil as well as growth performance of *Lactica sativa* grown in sandy clay loam soil for 55 days under greenhouse conditions. The values of the measured parameters revealed positive effects on fresh and dry weights of plant and nutrient contents .

The microbiological activity in the plant rhizosphere, was increased significantly with all bio-treatments amendment especially with dextran.

The results of the measured properties of soil demonstrated that dextran treatment recorded the lowest values of cumulative added water and total drainable pores (TDP%) recording the highest values of porosity (%), available water and MWD_{wet} as well as increased the favorable

aggregates with diameters from 1 mm to 10 mm. The synthetic polymers amended soil attained negative effect with all measured parameters.

Key words: Extracellular polysaccharide, *Xanthonomas, Leuconostoc, Auerobasidium*, *Azotobacter, Rhizobium*, soil conditioners *,Lactica sativa*, FTIR, ¹³ CNMR.

ACKNOWLEDGEMENT

Praise and thanks be to God, the most merciful for assisting and directing me to the right way.

Deepest gratitude to principal supervisor **Prof. Dr. Abd El-Wahab Mohamed Abd El- Hafez,** Prof. Emeritus of Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for suggesting the research problem, close supervision and valuable advices throughout all stages of this work.

I feel pleasure to record my whole hearted and sincerest graduated to **Prof. Dr. Enas Abd El-Tawab Hassan** Prof. of Agric. Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for her active supervision, endless generosity, deep interest, valuable advices and giving every possible help throughout different stages of the work.

My grateful thanks are extended to **Prof. Dr.Tarek Said El-Tayeb,** Prof. of Agric. Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his kind help and precious advices throughout most of the experimental work.

I am grateful to **Dr. Ahmed Adel Saad El-Dein,** Lecturer of Soil Sciences, Faculty of Agriculture, Ain Shams University, for his valuable help so necessary to the accomplishment of this study.

Finally, deepest thanks are due to my family for their continuous help and encouragement.

LIST OF CONTENTS

	Page
LIST OF TABLES	VII
LIST OF FIGURES	XV
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. What are the microbial polysaccharides	3
2.2. Classification of microbial polysaccharides	3
2.3. Microbial production of exopolysaccharides	4
2.3.1. Exopolysaccharide-producing microorganisms	5
a. Bacterial exopolysaccharides	
b. Fungal exopolysaccharides	
2.3.2. Classification of extracellular polysaccharides	9
2.3.3. Biosynthesis of exopolysaccharides	9
a. Homopolysaccharides	10
b. Heteropolysaccharides	10
2.4. Chemical structure of exopolysaccharides	10
2.5. Extraction and purification exopolysaccharide	13
2.6. Factors affecting exopolysaccharide production	14
2.6.1. Carbon source	14
2.6.2. Nitrogen source	14
2.6.3. Initial pH	15
2.6.4. Oxygen and aeration rate	15
2.6.5. Incubation temperature	16
2.7. Using raw materiales for exopolysaccharide production	16
2.8. Functional application of polysaccharides	17
2.8.1. Challenges in new reclaimed soils in Egypt	18
2.8.2. Soil conditioners	18
2.8.2.1. Types of soil conditioners	19
a. Organic soil conditioners	19
b. Synthetic Binding Agents	20

	Page
2.8.2.2. Microbial exopolysaccharide as soil conditioners:	20
a. Properties of exopolysaccharide	21
b. Physical, hydro-physical soil properties and plant growth	22
affected by the biopolymers:	
3. MATERIAL AND METHODS	24
3.1. Materials:	24
3.1.1. Polymeric substances:	24
3.1.2. Collected Samples:	24
3.1.2.1. Samples for microbial isolation:	24
A. Xanthan-producing bacteria	24
B. Dextran-producing bacteria	24
C. Alginate-producing bacteria	24
3.1.3. Microorganisms used	24
3.1.4. Seedlings	25
3.1.5. Soil sample and its characteristics	25
3.1.6. Media used	25
3.2. Experimental techniques	35
3.2.1. Isolation of bio-polymer producing bacteria	35
3.2.2. Maintenance of cultures	35
3.2.3. Microbial production of Extracellular polysaccharides	35
3.2.3.1. Standard inoculum:	35
3.2.3.2. Batch culture for Screening the efficient	36
exopolysaccharide producing cultures	
3.2.4. Selection of suitable medium for exopolysaccharide	36
production	
3.2.5. Nutritional requirements for producing exopoly-	37
saccharides	
a. Effect of carbon sources	37
b. Effect of nitrogen sources	38
3.2.6. Selection of studied extracellular polysaccharide	39
a. Production of extracellular polysaccharide under optimal	39

	Page
nutritional conditions	
b. Determination of extracellular polysaccharides in	39
supernatants	
c. Effect of exopolysacchariedes on soil structure	
3.2.7. Factors affecting the production of exopolysaccharide	41
a. Incubation temperature	41
b. Inoculum size	41
c– Seed inoculum age (h)	42
3.2.8. The Use of agro-industrial residues for extracellular	42
production	
3.2.9. Identification of bio-polymer producing bacteria	43
a- Morphological characteristics	43
b- Molecular identification	44
1- Sequence analysis of 16S rRNA Gene	44
2- Phylogenetic relationships:	44
3.2.10. Characterization of extracellular polysaccharides	45
a. Fourier transform infrared (FT-IR) spectroscopy	45
b. Nuclear magnetic resonance (NMR) data acquisition	45
3.2.11. Impact of selected exopolysaccharides as soil	45
conditioner on plant growth under greenhouse conditions	
a- Preparation of tested exopolysaccarides cultures and	45
application	
b- Experimental desigh	46
3.2.12. Parameters measured	47
A. Microbiological parameters	47
1- Dehydrogenase activity (DHA)	47
2- CO ₂ evolution	47
3.Viscosity measurement	48
4. Microbial growth parameters	48
B. Plant parameters	49
1. Vegetative parameters	49

1. Vegetative parameters

	Page
2- Nitrogen, phosphorus and potassium content	49
C. Soil analysis	49
1. Soil chemical analysis	49
2. physical and Hydro-physical soil analysis	50
3.2.13. Statistical analyses	51
4. RESULTS AND DISCUSSION	52
4.1. Isolation and selection of extracellular polysaccharides	52
producing cultures:	
4.1.1. Xanthan producing isolates:	52
4.1.2. Dextran producing bacteria:	54
4.1.3. Alginate-producing bacteria:	55
4.1.4. Pullulan-producing-fungus:	56
4.1.5. Curdlan producing bacteria:	57
4.2. Selection of suitable medium for studied exctracellular	57
polysaccharides production:	
4.2.1. For xanthan production:	58
a- 4.2.2. For dextran production:	59
4.2.3. For alginate production:	60
4.2.4. For pullulan production:	61
4.2.5. For curdlan production:	62
4.3. Nutritional factors for producing extracellular	63
polysaccharides:	
4.3.1. Carbon source and its concentration:	63
A. For xanthan production:	63
B. For dextran production:	66
C. For alginate production:	68
D. For pullulan production:	70
E. For curdlan production	72
4.3.2. Nitrogen sources:	74
A. For xanthan production:	74
B. For dextran production:	75

	Page
C.For alginate production	77
D. For pullulan production:	78
E. For curdlan production:	79
4.3.3. Ratio of carbon to nitrogen (C/N ratio):	80
A. For xanthan production:	80
B. For dextran production	82
C. For alginate production:	83
D. For pullulan production:	84
E. For curdlan production:	85
4.4. Growth and biopolymer parameters of tested cultures	86
under optimal nutritional conditions:	
4.5. Evaluation of extracellular polysaccharides as soil	89
conditioners	
4.5.1. Characteristic of soil samples	89
4.5.2. Soil properties as affected by biopolymers as soil	90
conditioners	
A. Cumulative water added:	90
B.Soil porosity	95
C.Soil water retention curves "SWRC"	101
1.Pore size distribution	101
2.Available water:	107
D. Stability and distribution of soil aggregates	111
4.6. Effect of some environmental factors on extracellular	116
polysaccharides production	
4.6.1.Incubation temperature	116
4.6.2.Inoculum age	119
4.6.3.Inoculum size	121
4.7. Using some industrial byproducts for extracellular	123
polymers production	
4.8. Molecular analysis of extracellular polysaccharides	126
producing bacteria	

	Page
4.8.1. Phylogenetic analysis	128
4.9. Charcterization of extracelleular polysacchairide:	130
4.9.1. ¹³ C NMR analysis	130
a.For xanthan polymer;	130
b.For dextran polymer;	131
C. For alginate polymer;	132
4.9.2.FTIR analysis	133
a. Spectroscropic analysis of xanthan	133
b.Spectroscopic analysis of dextran	134
c. Spectroscopes analysis of alginate.	134
4.10.Evaluation of the effect of biopolymers as conditioners	136
on growth of Lactuca stiva under greenhouse conditions:	
4.10.1Growth response of (Lactuca Sativa) affected by the	136
polymers.	
a- Growth performance:	136
b. Nutrient content	138
4.10.2.Soil microbial activity:	139
4.10.3. Soil structure affected by polymer	142
a. Cumulative water add	142
b. Soil porosity.	143
c. Soil Water Retention Curves "SWRC".	145
1. Pore size distribution	145
2. Available water content (AW)	147
d. Stability and distribution of soil aggregates	148
5. ENGLISH SUMMARY	152
6. REFERENCES	163
7.ARABIC SUMMARY	195

LIST OF TABLES

Table No.		Page
(1)	Total sugar and total nitrogen content of agro-	
	industrial byproducts obtained from different sources.	43
(2)	The culture viscosity of xanthan produced by	
	Xanthomonas isolates grown in productive medium	
	(Souw and Demain, 1979) using shake cultures at	
	30°C.	53
(3)	The culture viscosity of dextran produced by	
	Leuconostoc isolates grown in productive medium	
	(Aman et al., 2009) using static cultures at 25°C	55
(4)	The culture viscosity of alginate produced by	
	Azotobacter isolates grown in productive medium	
	(Clementi <i>et al.</i> , 1995) using shake cultures at 30° C	56
(5)	The culture viscosity of curdlan produced by	
	Rhizobium isolates grown in productive medium	
	yeast extract mannitol (Graham, 1969) using shake	
	cultures at 30°C	57
(6)	Culture viscosity and cell dry weight of the selected	
	Xanthomonas isolates on different productive media	
	using shake cultures as a batch culture at 30°C	59
(7)	Culture viscosity and cell dry weight of the selected	
	Leuconostoc isolates on different productive media	
	using static cultures as a batch culture at 25°C	60
(8)	Culture viscosity and cell dry weight of the selected	
	Azotobacter isolates on different productive media	
	using shake cultures at 30°C	61
(9)	Culture viscosity and cell dry weight of the selected	
	Aurebasidium pullulans isolates on different	
	productive media using shake cultures at 30°C	62
(10)	Culture viscosity and cell dry weight of the selected	63

Table No.		Page
	Rhizobium isolates on different productive media by	
	using shake cultures at 30°C.	
(11)	Effect of different carbon sources on xanthan	
	production by selected isolates of Xanthomonas	
	grown on Med. A5 (Garcia-Ochoa et al., 1992)	
	using shake cultures at 30°C for 6 days.	64
(12)	Effect of different sucrose concentrations on xanthan	
	production by selected isolates of Xanthomonas grown	
	on Med. A5 (Garcia-Ochoa et al., 1992) using shake	
	cultures at 30°C for 6 days.	65
(13)	Effect of different carbon sources on dextran	
	production by selected isolates of Leuconostoc grown	
	on Med. B4 (De Man et al., 1960) using static	
	cultures at 25°C	66
(14)	Effect of different sucrose concentrations on dextran	
	production by selected isolates of Leuconostoc grown	
	on Med. B4 (De Man et al., 1960) using static	
	cultures at 25°C.	67
(15)	Effect of different carbon sources on alginate production	
	by selected isolates of Azotobacter grown on Med.C2	
	(Clementi et al., 1995) using shake cultures at 30°C for 6	
	days	68
(16)	Effect of different sodium citrate concentration on	
	alginate production by selected isolates of	
	Azotobacter grown on Med. C2 : (Clementi et al.,	
	1995) using shake cultures at 30°C for 6 days.	69
(17)	Effect of different carbon sources on pullulan production	
	by selected isolates of Aurebasidium pullulans grown on	
	Med. D3 (Shabtai and Mukmenev, 1995) using shake	
	cultures at 30°C for 6 days.	70
(10)		- 1

(18) Effect of different sucrose concentrations on pullulan 71