

Role of PET imaging in assessment of myocardial perfusion and viability

Essay Submitted for partial fulfillment of master degree in Radiodiagnosis

> By Mostafa Samir Mokhtar Hamed M.B., B.Ch.

> > Under the supervision of

Prof. Randa Hussein Abdallah

Professor of Radio diagnosis Faculty of medicine - Ain Shams University

Dr. Susan Adil Ali Abdul Rahim

Lecturer of Radio diagnosis Faculty of medicine - Ain Shams University

> Faculty of medicine Ain Shams University 2016

دورالتصوير باستخدام الإصدار البوزيتروني الانبعائي لتقييم مدي ارتواء و سلامة عضلة القلب

- **ا.د. راندا حسين عبد الله** استاذ الاشعة التشخيصية كلية الطب - جامعة عين شمس
- د. سوزان عادل علي عبد الرحيم
 مدرس الاشعة التشخيصية
 كلية الطب جامعة عين شمس

List of Tables

Table No	. Title	Page No.
Table 1	Evolution of Morphologic Changes in	29
	Myocardial Infarction.	
Table 2	PET radiotracers used for cardiac imaging.	35
Table 3	Rb-82 rest/stress myocardial perfusion imaging guideline for BGO and LSO PET imaging systems.	40
Table 4	Rb-82 rest/stress myocardial perfusion imaging guideline for GSO PET imaging systems	41
Table 5	N-13 ammonia cardiac perfusion studies.	43
Table 6	FDG cardiac PET: acquisition guidelines for dedicated, multicrystal PET scanner.	47
Table 7	Comparison of different techniques for prediction of recovery of regional functio post-revascularization.	67 n

List of Figures		
Fig. No.	Title	Page No.
Figure 1	Diagram shows Heart and mediastinum.	8
Figure 2	Diagram displaying the heart and great vessels.	8
Figure 3	Diagram displaying the structure of the heart, a posterior view.	10
Figure 4	Diagram displaying the structure of the heart. An internal view.	11
Figure 5	Diagram displaying the structure of the heart. An anterior view.	12
Figure 6	Diagram displaying relationship of aortic and pulmonary valves and rigin of right and left pulmonary arteries.	13
Figure 7	Diagram displaying right coronary artery anatomy.	15
Figure 8	Diagram shows 3D reconstructed images MSCT showing branches of the left main coronary artery.	16

List of Figures cont...

Fig. No.	Title	Page No.
Figure 9	Relationship between blood flow and severity of coronary stenosis.	22
Figure 10	Diagram of sequential progression of coronary artery lesions.	24
Figure 11	Diagram shows Dependence of myocardial infarction on the location and nature of the diminished perfusion.	27
Figure 12	Diagram shows the principles of PET imaging.	32
Figure 13	Diagram shows view of a typical positron emission tomography (PET) machine.	33
Figure 14	Diagram shows Series of tomographic cuts of the left-ventricular myocardium	49
Figure 15	Diagram shows polar left-ventricular map.	50
Figure 16	Diagram shows scheme of the 17-segment left ventricular model.	54

List of Figures cont...

Fig. No.	Title	Page No.
Figure 17	Diagram shows Stable perfusion defect. 13 N-Ammonia PET of the heart.	55
Figure 18	Diagram shows partially reversible perfusion defect. 13 N-Ammonia PET of the heart. Left-ventricular cuts along the short axis.	57
Figure 19	Diagram shows reversible perfusion defect. 13 N-Ammonia PET of the heart. Vertical Left-ventricular cuts.	58
Figure 20	Diagram shows relative quantification accuracy, results from three studies.	59
Figure 21	A mismatch with reduced rest perfusion (measured by 82 Rb) and preserved metabolism (measured by 18 F-FDG).	63
Figure 22	Polar maps of perfusion, metabolism, (from gated FDG-PET).	64

List of Figures cont...

Fig. No.	Title	Page No.
Figure 23	Fused 3D reconstructions of coronary CTA	A 68
	and stress 82Rb myocardial perfusion study	у
	obtained in same setting, assessed through	
	integrated PET/CTA.	
Figure 24	Diagram shows comprehensive, hybrid	69
Figure 25	Resting 13N-ammonia and 18E-EDG	71
Figure 25	tomographic images and polar maps	/1
Figure 26	Resting 13N-ammonia and 18F-FDG tomographic images and polar maps	72
Figure 27	Gated rest perfusion study with 82Rb followed by gated 18FDG PET imaging.	73
Figure 28	The rest-stress 82Rb PET perfusion images	s 75
Figure 29	The Rest-stress 82Rb PET perfusion image	S

List of Abbreviations

Abb. Full term
BGObismuth germinatems
CACoronary angiography
CADcoronary artery disease
CMRcardiac magnetic resonance imaging
Coronary CTAcoronary CT angiography
DSEDobutamine Stress Echocardiography
EBCTelectron beam computed tomography
FDGfluorine deoxyglucose
GSOgadolinium oxyorthosilicate
HLAhorizontal long axis
IHDIschemic heart disease
keVKilo electron volt
LADleft anterior descending artery
LCAleft coronary artery
LCXleft circumflex artery
LDLlow density lipoprotein
LGElate gadolinium enhancement
LMleft main coronary artery
LSOlutetium oxyorthosilicate
LVleft ventricular
LVEFleft ventricular ejection fraction
MBFmyocardial blood flow
mCimille curie

List of Abbreviations cont...

Abb.	Full term
MeV	milli electron volt
MFR	myocardial flow reserve
MI	myocardial infarction
MPS	myocardial perfusion scintigraphy
MRI	magnetic resonance imaging
MSCT	Multi-slice computed tomography
MVO2	myocardial oxygen demand
OM	obtuse marginals
PCI	percutaneous coronary intervention
PET	positron emission tomography
PET/CT	positron emission tomography/Computed tomography
PMTs	photomultiplier tubes
Rb-82	rubidium-82
RCA	right coronary artery
RI	ramus intermedius
SA	short axis;
SPECT	single photon emission computed tomography
VLA	vertical long axis.
150-water	oxygen-15 water
18F-FDG	18F-Fluorodeoxyglucose

Introduction and Aim of work.

Introduction

In developed countries, coronary artery disease (CAD) continues to be a major cause of death and disability (*Ghosh et al., 2010*). The National Heart Lung and Blood Institute (NHLBI) reports that one in four deaths annually are directly caused by coronary artery disease. (*Rosamond et al., 2011*).

The ability to distinguish reversible from irreversible myocardial injury is of critical importance in the management of patients with both acute and chronic coronary artery disease (CAD) (Matsunari et al., 2003). The assessment of myocardial viability may guide patient's management and prediction of clinical outcome after coronary revascularization .Multiple imaging techniques have been developed to assess viable and nonviable myocardium by evaluating perfusion, cell membrane integrity, glucose metabolism, scar tissue, and contractile reserve. (Schinkel et al., 2007).

For patients with obvious symptoms of CAD Contrast coronary angiography (CA) is an invasive imaging technique for the visualization of coronary anatomy. Pooled data in patients with suspected coronary artery disease undergoing diagnostic CA demonstrate that 20-40 % of them are inconclusive for the documentation of hemodynamically severe atherosclerotic disease .Finally, CA is limited by its invasive nature and bears low, but nevertheless not negligible rates of procedure related mortality (0.15%) and morbidity (1.5%), as well as having a relatively high cost. (*Dobrucki et al., 2010*).

As an alternative to invasive and expensive percutaneous coronary intervention (PCI), non-invasive imaging techniques are used to detect asymptomatic CAD patients at an early stage and guide optimal patient management thereafter. (*Weustink et al.*, 2010).

There are two types of studies: anatomical and functional imaging. For anatomical imaging, Multi-slice computed tomography (MSCT), electron beam computed tomography (EBCT) and magnetic resonance imaging (MRI) are used: whereas, for functional imaging, nuclear cardiology and/or stress echocardiography are used. (*Weustink et al., 2010*).

Cardiac imaging techniques using myocardial perfusion scintigraphy (MPS), based on the study of myocardial perfusion and cellular membrane integrity, have achieved substantial success in the assessment of myocardial viability. (*Chalela et al., 2010*).

Recently the use of positron emission tomography (PET) as a noninvasive tool for imaging the heart in coronary artery disease to look for perfusion defects and viability has already been established. This has helped us to know the extent of myocardial bloodflow and the metabolic changes occurring in the myocardium. (*Pradhan et al., 2015*). The clinical application of PET in ischaemic heart disease falls into two main categories: first, it is a well-established modality for evaluation of myocardial blood flow (MBF); second, it enables assessment of myocardial metabolism and viability in patients with ischaemic left ventricular (LV) dysfunction. The combined study of MBF and metabolism by PET has led to a better understanding of the pathophysiology of ischaemic heart disease. (*Pradhan et al., 2015*).

Aim of the work

To illustrate the recent role of PET imaging in assessment of myocardial perfusion and viability.

Chapter 1

Anatomy of the heart and its blood supply.